Research Article

Amphibian Diversity of Chandgad Taluka - Kolhapur: Northern Western Ghats

N.C. Hiragond

Department of Zoology, Yashwantrao Chavan Mahavidyalaya Halkarni – 416 552 Tq. Chandgad, Dt. Kolhapur, Maharashtra state, India

(Received: March 03, 2022; Revised: October 28, 2022; Accepted: November 30, 2022)

ABSTRACT

In this paper 28 amphibian species are reported from Chandgad taluka in Kolhapur district of Southern Maharashtra in Northern Western Ghats. This contributes 6.26 % of amphibians reported from Indian Subcontinent and 52.83 % of amphibians recorded from Maharashtra. The documented amphibians representing 07 families and 16 genera. Among the amphibians recorded 03 species belongs to near threatened and 01 species belongs to each of endangered, vulnerable and critical category of IUCN.

Key words: Amphibians, Anura, Caecilian, Chandgad, Checklist, Western Ghats

INTRODUCTION

The Indian subcontinent represents 447 amphibians of which 406 are anurans, two species are of Salamanders and 39 species of caecilians (Dinesh et al., 2020). Among these 239 are found in the Western Ghats (Dinesh et al., 2017a). Recent studies (Biju & Bossuyt, 2005ab, 2006; Gururaja et al., 2007; Giri et al., 2003; Gower et al., 2008; Howlader et al., 2015; Biju et al., 2011, 2014; Zachariah et al., 2011ab; Garga et al., 2018; Dinesh et al., 2017b) show that, there are still several new species waiting to be discovered. Kulkarni et al., (2013) documented 36 amphibians from our neighboring state Goa. Whereas, Maharashtra state harbours 53 amphibians (Padhye & Ghate, 2012) contributing 11.86 % of amphibians found in India. Recently, 22 amphibians documented from Rahdhanagari Wildlife Sanctuary Kolhapur (Yaday & Yanckanchi, 2014) and 14 amphibians recorded from Shivaii University Campus Kolhapur (Yadav et al., 2014). Chandgad taluka in Kolhapur district of Southern Maharashtra is a part of the Northern Western Ghats. It is the border area between Karnataka and Goa. Since, - there are no published data on amphibian diversity from Chandgad, - an attempt is made to record the amphibian diversity.

Study Area:

The study area Chandgad taluka (15° 55' 60 N, 74° 23' 0 E) is located around 800 m asl. and temperature ranges from 14.75° C to 36.10° C. The annual rain fall ranges from 3000 to 5000 mm/year. Chandgad taluka consists of several temporary ponds, puddles, lakes, irrigation canals, paddy fields and agricultural fields. Habitat consists of moist mixed deciduous forest and semi evergreen mixed forest with acacia plantation, bamboo

forest, open land, grass land. It is also traversed by several temporary streams and perennial Rivers such as Hiranykeshi, Ghathaprabha and Tamrapani.

MATERIAL AND METHODS

Regular field visits are made to different parts of the study area for documentation of amphibians from June 2017 to February 2019. We also added some field observation data made during June 2021 to September 2021. Surveys are made during early morning and in late evening by visual encounters survey method. Amphibians are intensively searched along the edges of streams, temporary water bodies, puddles, ditches, agricultural fields, grasslands, under leaf litter, in forest floors, on tree trunks, under stones, logs, rock crevices, decaying vegetation etc. We tried to identify the egg mass, tadpoles, froglet and adult amphibians in the field. The amphibians identified in the field were released after taking some images with mobiles, D5300 and D7200 Nikon Camera. The unidentified tadpoles and amphibians in the field were brought to the laboratory and their identification was made by referring the books and research articles (McDiarmid & Altig, 1999; Hiragond & Saidapur, 1999; Hiragond et al., 2001; Saidapur, 2001; Altig & McDiarmid, 2015; Daniels, 1997abc, 2011; Gururaja, 2012; Daniel, 1963ab, 1975; Bhatta, 1998). Later they were released to the nature. We also identified some of the frogs based on their calls during the breeding season in late evening. Stereo zoom dissecting microscope was used for the observation of morphological details of tadpole and caecilian for their identity. The status of threatened category of amphibians is adopted from IUCN Red List of Threatened Species (2022).

^{*}Corresponding Author's E-mail: hiragond@gmail.com

RESULTS AND DISCUSSION

During regular field visits to different parts of the study area we found egg clutches of Microhyla nilphamariensis, Clinotarsus curtipes, Indosylvirana caesari, Duttaphrynus melanostictus, Hoplobatrachus tigerinus, Polypedates maculatus, Nyctibatrachus petraeus and some unidentified egg masses. We also observed the tadpoles of H. tigerinus, D. melanostictus, C. curtipes, M. nilphamariensis, E. cynophlyctis, P. maculatus, N. petraeus and some unidentified tadpoles in their natural habitat like ponds, puddles, streams etc. We have sighted several adult frogs in their natural habitats namely I. caesari, D. melanostictus, Sphaerotheca breviceps, Hydrophylax malabaricus, Minervarya goemchi, H. tigerinus, Duttaphrynus scaber, M. nilphamariensis, Microhyla rubra, Rhacophorus malabaricus etc enlisted in table 1. During the rainy season we encountered several calling males (Images 4, 13, 15a, 16b) and newly metamorphosed frogs (froglets) of I. caesari, D. melanostictus, H. tigerinus, E. cynophhlyctis, M. nilphamariensis. We also encountered three individuals of a caecilian from Patne phata, Halkarni and along the mining road in Chandgad which were brought to the laboratory for further observation. We identified the said caecilian up to the genus level and confirmed that, it belongs to Gegenophis genus following Bhatta (1998). The morphological details of the said caecilian compared with congeners of the known Gegenophis genus. We are working on molecular analysis of the said caecilian. As per our best of knowledge we are first time reporting the above said caecilian. We also observed lot of morphological variations in Pseudophilautus amboli (Image 10abc) and Minervarya syhadrensis (Image15abc) frogs in nature.

We recorded 28 amphibians (Table 1) from the study area representing seven families (Figure 1) and 16 genera (Figure 2) that contribute 6.26% of Indian amphibians (Dinesh *et al.*, 2020), 52.83% of amphibians recorded in Maharashtra (Padhye & Ghate, 2012) and 77.78% of amphibians documented in Goa state

(Kulkarni et al., 2013). Our findings show that, Chandgad taluka is rich in amphibian diversity. We recorded 93.33% of amphibians documented in Sangli district (Sajjan et al., 2017) and 90.32% of amphibians reported from Pune district (Padhye et al., 2002) in Maharashtra. Sajjan et al., (2018) recorded 17 anuran species from Solapur district. Whereas, this paper reports 27 anurans from study area which shows the richness of amphibians in Chandgad taluka. Microhylidae dominate the study area followed by Dicroglossidae and, Bufonidae and Rhacophoridae (Figure 1). Among the genera Uperodon represents the maximum number of species followed by Duttaphrynus (Figure 2). During rainy season in Tillari at late night we found adult D. melanostictus with a leech attached on its ventral surface. We removed the leach from its body and released in its natural habitat (Image 17bc). Photo plate 1 (Images 1 to 20) shows some of the anurans, caecilian and egg mass recorded during the field work.

Among the amphibians documented Pseudophilautus amboli belongs to Critically Endangered category; Raorchestes bombayensis belongs to vulnerable category; Uperodon mormoratus belongs to Endengered category; Duttaphrynus parietalis, Uperodon montanus and Clinotarsus curtipes belongs to Near Threatened category and, 19 anuran species belong to Least Concern category (Table 1, Figure 3) of IUCN conservation status (IUCN, 2022). Most of the times we found difficulty in identification of egg masses and tadpoles in the field. Studies are needed on developmental stages of anuran larvae, identification of egg clutches and tadpoles. Since, - caecilians are very rare and burrowing in habitat, it is difficult to find them in their natural habitat. Hence, studies are needed to concentrate on habitat, diversity and biology of caecilians in the study area which could open a window for researchers to continue further research on amphibian developmental biology and behavioral studies. It is also necessary to take up some conservation aspect projects to conserve critically endangered species P. amboli and vulnerable species R. bombayensis.

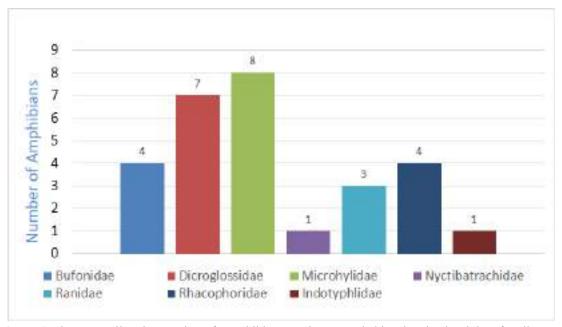
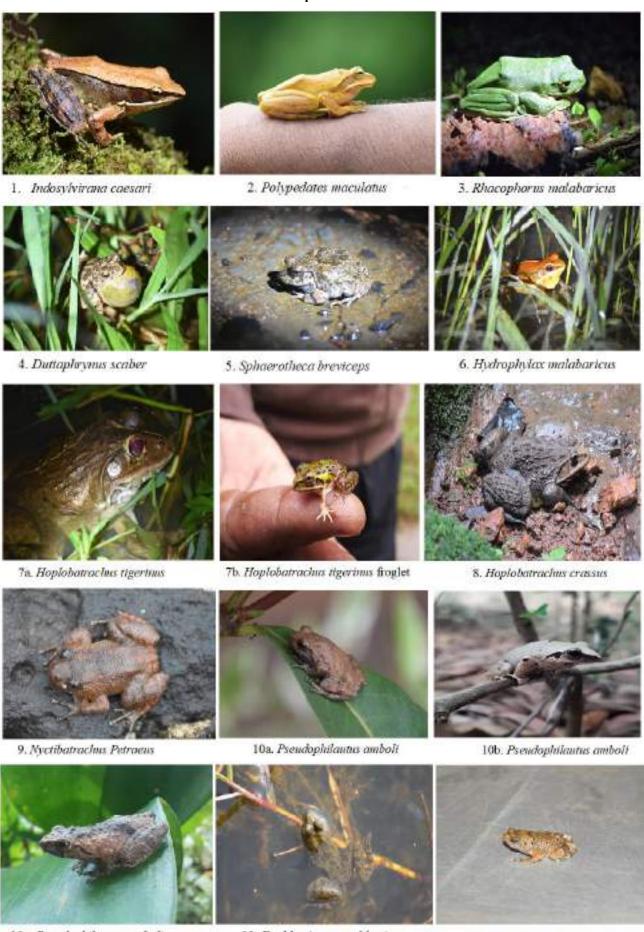
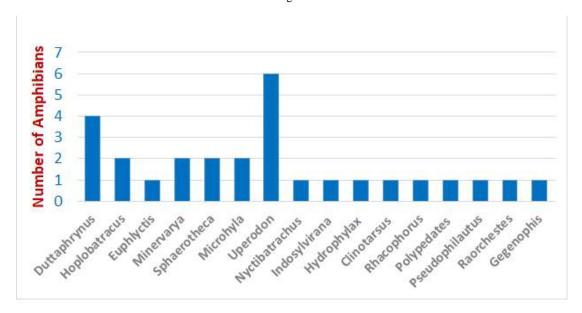



Figure 1. Shows Family wise number of Amphibian Species Recorded in Chandgad Taluka of Kolhapur

Table 1. Showing Amphibian Diversity Recorded in Chandgad Taluka of Kolhapur

Sl. No.	Order/Family	Common Name	Scientific Name	IUCN Con- servation Status
	1. Order Anura			
1	Bufonidae	Ferguson's Toad	Duttaphrynus scaber (Schneider, 1799)	LC
2	Bufonidae	Asian Common Toad	Duttaphrynus melanostictus (Schneider, 1799)	LC
3	Bufonidae	Ridged Toad	Duttaphrynus parietalis (Boulenger, 1882)	NT
4	Bufonidae	Marbled Toad	Duttaphrynus stomaticus (Lutken, 1864)	LC
5	Dicroglossidae	Indian Bull Frog	Hoplobatrahcus tigerinus (Daudin, 1802)	LC
6	Dicroglossidae	Jerdon's Bull Frog	Hoplobatrachus crassus (Jerdon, 1853)	LC
7	Dicroglossidae	Skittering Frog	Euphlyctis cyanophlyctis (Schneider, 1799)	LC
8	Dicroglossidae	Bombay Wart Frog	Minervarya syhadrensis (Annandale, 1919)	LC
9	Dicroglossidae	Goan large fejervarya	Minervarya goemchi (Dinesh, Kulkarni, Swamy and Deepak, 2018)	NA
10	Dicroglossidae	Indian Burrowing Frog	Sphaerotheca breviceps (Schneider, 1799)	LC
11	Dicroglossidae	Roland's Burrowing Frog	Sphaerotheca rolandae (Dubois, 1983)	LC
12	Microhylidae	Ornate Narrow-Mouthed Frog	Microhyla nilphamariensis (Howlader, Nair, Gopalan and Merilä, 2015)	NA
13	Microhylidae	Guangdong Rice Frog	Microhyla rubra (Jerdon, 1853)	LC
14	Microhylidae	Indian Dot Frog	Uperodon mormoratus (Rao, 1937)	EN
15	Microhylidae	Marbled Globular Frog	<i>Uperodon systoma</i> (Schneider, 1799)	LC
16	Microhylidae	Indian Globular Frog	Uperodon globulosus (Günther, 1864)	LC
17	Microhylidae	Sri Lankan Bullfrog	Uperodon taprobanicus (Parker, 1934)	LC
18	Microhylidae	Jerdon's Ramanella	Uperodon montanus (Jerdon, 1853)	NT
19	Microhylidae	Eluru Dot Frog	Uperodon variegatus (Stoliczka, 1872)	LC
20	Nyctibatrachidae	Castle Rock Night Frog	Nyctibatrachus petraeus (Das and Kunte, 2005)	LC
21	Ranidae	Bronzed Frog	Indosylvirana caesari (Biju, Garg, Mahony, Wijayathilaka, Senevirathne and Meegaskumbura, 2014)	NA
22	Ranidae	Malabar Fungoid Frog	Hydrophylax malabaricus (Tschudi, 1838)	LC
23	Ranidae	Bicoloured Frog	Clinotarsus curtipes (Jerdon, 1853)	NT
24	Rhacophoridae	Malabar Gliding Frog	Rhacophorus malabaricus (Jerdon, 1870)	LC
25	Rhacophoridae	Indian Tree Frog	Polypedates maculatus (Gray, 1830)	LC
26	Rhacophoridae	Amboli Bush Frog	Pseudophilautus amboli (Biju and Bossuyt, 2009)	CE
27	Rhacophoridae	Bombay Bush Frog	Raorchestes bombayensis (Annandale, 1919)	VU
28	2. Order Gym- nophiona (Apoda) Indotyphlidae	-	Gegenophis sp.	

Photo plate 1.


10c. Pseudophilautus amboli

11. Euphlyctis cyanophlyctis

12. Uperodon mormoratis.

AJCB Vol. 11 No. 2, pp. 281–288, 2022

Figure 2. Shows Genera wise number of Amphibian Species Recorded in Chandgad Taluka of Kolhapur

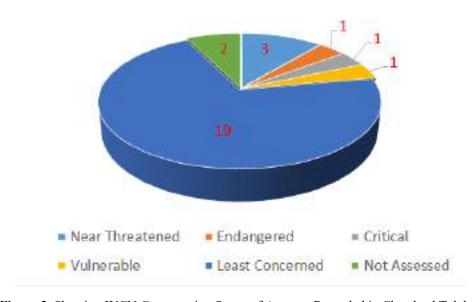


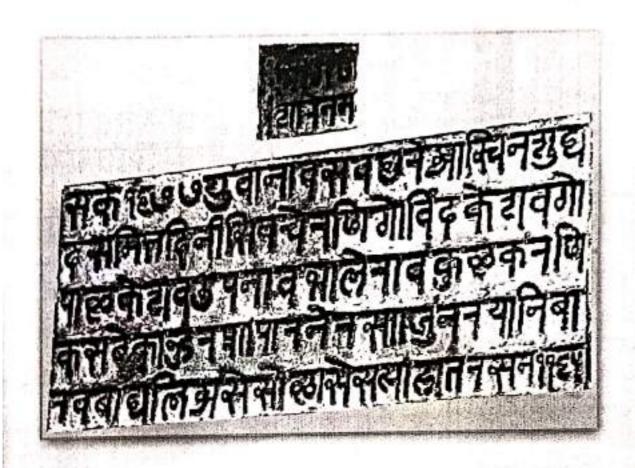
Figure 3. Showing IUCN Conservation Status of Anurans Recorded in Chandgad Taluka of Kolhapur

ACKNOWLEDGMENTS

The work is supported by Rajiv Gandhi Science and Technology Commission (RGSTC) Mumbai Grant No: RGSTC/SUK/SRP/SL-04/2016-17. Author wish to acknowledge forest department officials CF Kolhapur, DFO Kolhapur, RFO Patne Phata, RFO Chandgad and their staff for their kind cooperation and allowing to do field work in the study area. Author wish to thank Dr. N. P. Gramapurohit, Savitribai Phule Pune University, Pune and Dr. K. P. Dinesh, Zoological Society of India, Pune for their help in identification of anurans. Author wish to thank the anonymous referee for constructive comments on earlier draft which improved the quality of research paper. Author also thank the Principal, Yashwantrao Chavan Mahavidyalaya Halkarni for providing facilities.

REFERENCES

- Altig, R. and McDiarmid, R. W. 2015. Handbook of larval amphibians of the United States and Canada. Cornell University Press, Ithaca and London.
- Bhatta, G. 1998. A field guide to the caecilians of the Western Ghats, India. J. Bioscience 23(1): 73-85.
- Biju, S. D. and Bossuyt, F. 2005a. A new species of frog (Ranidae, Rhacophorinae, *Philautus*) from the rainforest canopy in the Western Ghats, India. Curr. Sci. 88: 175-1788
- Biju, S. D. and Bossuyt, F. 2005b. New Species of *Philautus* (Anura: Ranidae, Rhacophorinae) from Ponmudi Hill in the Western Ghats of India. J. Herpetology 39(3): 349–353.


- Biju, S. D. and Bossuyt, F. 2006. Two new species of *Philautus* (Anura, Ranidae, Rhacophorinae) from the Western Ghats, India Amphibia-Reptilia. 27: 1-9.
- Biju, S. D., Bocxlaer, I. V., Mahony, S., Dinesh, K. P., Radhakrishnana, C., Zachariah, A., Giri, V. and Bossuyt, F. 2011. A taxonomic review of the night frog genus Nictibatrachus Boulenger, 1882 in the Western Ghats, India (Anura: Nyctibatrachidae) with description of twelve new species. Zootaxa 3029:1-96.
- Biju, S. D., Garg, S., Mahony, S., Wijayathilaka, N., Senevirathne, G. and Meegaskumbura, M. 2014. DNA barcoding, phylogeny and systematics of Golden-backed frogs (Hylarana, Ranidae) of the Western Ghats-Sri Lanka biodiversity hotspot, with the description of seven new species. Contributions to Zoology, 83(4): 269-335
- Daniel, J. C. 1963a. Field guide to the Amphibians of western India. Part 1. J. Bom. Nat. Hist. Soc. 60: 415-438.
- Daniel, J. C. 1963b. Field guide to the Amphibians of western India. Part 2. J. Bom.Nat. Hist. Soc. 60: 690-702.
- Daniel, J. C. 1975. Field guide to the Amphibians of western India. Part 3. J. Bom. Nat. Hist. Soc. 72: 506-522.
- Daniels, R. J. R. 1997a. A Field guide to the frogs & toads of the western ghats, India. Part 1 Cobra 27: 1-25.
- Daniels, R. J. R. 1997b. A Field guide to the frogs & toads of the western ghats, India. Part 2 Cobra 28: 1-24.
- Daniels, R. J. R. 1997c. A Field guide to the frogs & toads of the western ghats, India. Part 3 Cobra 29: 1-13.
- Daniels, R. J. R. 2011. Amphibians of Peninsular India. Universities Press (India) Private Limited, Hyderabad
- Dinesh, K. P., Radhakrishnan, C., Channakeshavamurthy, B. H., Deepak, P. and Kulkarni, N. U. 2020. A Checklist of Amphibians of India with IUCN Conservation Status. Version 3.0. Updated till April 2020. Available at http://zsi.gov.in (online only).
- Dinesh, K.P., Radhakrishnan, C., Channakeshavamurthy, B. H., Deepak, P. and Kulkarni, N. U. 2017a. Checklist of Amphibia of India, updated till April 2017 available at http://mhadeiresearchcenter.org/resources (online only).
- Dinesh, K. P., Kulkarni, N. U., Swamy, P. and Deepak, P. 2017b. A new species of Fejervarya Bolkay, 1915 from the lateritic plateaus of the Goa parts of the Western Ghats. Rec. zool. Surv. India: Vol. 117(4)/301-314.
- Garga, S., Das, A., Kameia, R. G. and Biju, S. D. 2018. Delineating Microhyla nilphamariensis (Anura, Microhylidae): Mitochondrial DNA barcodes resolve century old taxonomic misidentification. Supplementary Information, Mitochondrial DNA Part В, 3:2, 856-861, DOI: 10.1080/23802359.2018.1501286 Published online 09 August 2018

- Giri, V., Mark, W. and David, J. G. 2003. A new species of Gegeneophis Peters (Amphibia: Gymnophiona: Caeciliidae) from southern Maharastra, India, with a key to the species of the genus. Zootaxa 351: 1–10.
- Gower, D. J., Giri, V., Dharne, M. S. and Shouche, Y. S. 2008. Frequency of independent origins of viviparity among caecilians (Gymnophiona) evidence from the first 'livebearing' Asian amphibian. J. Evol. Biol. 21: 1220-1226.
- Gururaja, K. V., Dinesh, K. P., Palot, M. J., Radhakrishnan, C. and Ramachandra, T. V. 2007. A new species of Philautus Gistel (Amphibia: Anura: Rhacophoridae) from southern Western Ghats, India. Zootaxa 1621: 1–16.
- Gururaja, K. V. 2012. Pictorial guide to frogs and toads of the western Ghats. Gubbi labs LLP. Gubbi, Karnataka. file:///C:/Users/HP/Downloads/ Gururaja KV 2012. Pictorial Guide Frogs Toads.p.
 - raja_KV_2012_Pictorial_Guide_Frogs_Toads.p
- Hiragond, N. C. and Saidapur, S. K. 1999. Description of tadpole *Rana temporalis* from South India. Curr. Sci. 76: 442-444.
- Hiragond, N. C., Shanbhag, B. A. and Saidapur, S. K. 2001. Description of the tadpole of a stream breeding frog, *Rana curtipes*. J. Herpetol. 35: 166-168.
- Howlader, M. S. A., Nair, A., Gopalan, S. V. and Merilä, J. 2015. A New Species of *Microhyla* (Anura: Microhylidae) from Nilphamari, Bangladesh. PLoS ONE 10(3): e0119825. https://doi.org/10.1371/journal.pone.0119825
- IUCN 2022. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org
- Kulkarni, N., Dinesh, K. P., Prashanth, P., Bhatta, G. and Radhakrishnan, C. 2013. Checklist of Amphibians of Goa. Zoos Print 19: 7-12
- McDiarmid, R. W. and Altig, R. 1999. Introduction: The tadpole arena. In: "Tadpoles: The biology of anuran larvae (R. W. McDiarmid & R. Altig eds), The University of Chicago Press, Chicago.
- Padhye, A. D. and Ghate, H. V. 2012. Amphibia, Zoological survey of India, Fauna of Maharashtra, State Faunal Series 20(Part I): 239-246.
- Padhye, A. D., Mahabaleshwarkar, M. and Ghate, H. V. 2002. An Overview of Amphibian Fauna of Pune District with special reference to their status in and around Pune city. Zoos Print 17(4): 757-763.
- Saidapur, S. K. 2001. Behavioral ecology of anuran tadpoles: The Indian Scenario, Proc. Indian Natn. Sci. Acad. B 67: 311-322.
- Sajjan, M. B., Jadhav, B. V. and Patil, R. N. 2017. Diversity, Distribution and Status of the Amphibian fauna of Sangli district, Maharashtra, India. Int. J. of Life Science 2017, 5(3): 409-419.
- Sajjan, M. B., Jadhav, B. V. and Patil, R. N. 2018. Checklist of Anurans from semi-arid biotope of Deccan Plateau; Solapur District, Maharashtra, India. Int. J. of Life Sciences 2018, 6(1): 173-176.

- Yadav, O. V. and Yankanchi, S. R. 2014. Preliminary study of Herpetofaunal Diversity in Radhanagri Wildlife Sanctuary (WLS), Kolhapur, Maharashtra, India, Biolife 2(4): 1154-1159.
- Yadav, O. V., Yankanchi, S. R. and Patil, A. M. 2014. Diversity, Threats and Conservation of Herpetofauna in Shivaji University Campus, Kolhapur, Maharashtra, India. Int. J. Curr. Microbil. App. Sci. 3(6): 742-749.
- Zachariah, A., Dinesh, K. P., Kunhikrishan, E., Das, S., Raju, D. V., Radhakrishnan, C., Palot, M. J. and Kalesh, S. 2011a. Nine new species of frogs of the genus Raorchestes (Amphibia: Anura: Rhacophoridae) from southern Western Ghats, India. Biosystematica 5(1): 25-48
- Zachariah, A., Dinesh, K. P., Radhakrishnan, C., Kunhikrishan, E., Palot, M. J. and Vishnudas, C. K. 2011b. A new species of Polypedates Tschudi (Amphibia: Anura: Rhacophoridae) from southern Western Ghats, Kerala, India. Biosystematica 5(1): 49-53.

वर्ष: ९० जून २०२२ अंक २

इतिहासाचार्य वि. का.राजवाडे संशोधन मंडळ, धुळे

-0		.0		0			.0		^		6		m		£		×		w		N		-0
मंडळाचा त्रैमासिक अहवाल – श्री.राजेंद्र देशपांडे ८८	- श्रीपाद नांदेडकर, क्युरेटर ८६	इ.वि.का. राजवाडे संशोधन मंडळातील मोडीपत्र व लिप्यंतर	Dr. Pragati Barthwal, Dehradun 68	Cultural issues in positic Psychology	- मनोहर त्रिंदे व डॉ.धनंजय चौधरी, अमळनेर ७२	पायवंद घालणारे जुलमी कायदे आणि कार्यवाही	त्रिटिश शासनाच्या दंडपशाही धोरणावर आधारित जहालवादाला	- भूषण फडतरे, पुणे ५८	भूमिगत चळवळीत स्त्रियांचा लढा	- ज्योती बुवा, मालवण ४९	मालवण तालुक्यातील मिरीदुर्ग	 डॉ.मधुक्त जाधव, हलकर्णी, कोल्हापूर ४३ 	छत्रपती शिवाजी महाराजांचे वाणिज्य धोरण	- डॉ.ओमशिवा लिगाडे, लातूर ३८	देवर्जन जवळील हत्तीबेट : मिनी माथेरान	- डॉ.पदाकर प्रमुणे, शिरूर ३३	कान्ह्र पठार येथील अप्रकाशित शिलालेख	- रामी भिरूड, पुणे २८	भामेर येथील फारसी शिलालेख	- प्रा.अश्विनी खबळे, कोल्हापूर १८	गुप्तकालीन स्त्रीजीवन – एक अभ्यास	- श्री. मनोहर सुभाष निकम, सातारा ५	कॉ.श्रीपाद अमृत डांगे यांचे बौद्ध धर्माविषयी विचार : एक अभ्यास

😭 इतिहासाचार्य थि.का.राजवाडे संशोधन मंडळ, धुळे.

आवाहन

शोधनिबंध पाठवाबेत ही आग्रहाची बिनंती होय.) अतिमहत्त्वाचे : सर्वच शोधनिबंध लेखकांनी अवलोकन करून त्यानुसार

सूचना खालीलप्रमाणे तपशीलवार देत आहोत. संशोधन पद्धतीनुसार बाबींची परिपूर्णता होणे आवश्यक आहे. याविषयीच्या आपण जे शोधनिबंध पाठवितो, त्यात सर्वसाधारण ऐतिहासिक आणि समाजशास्त्रीय आपले मुख्य ध्येय राहिले आहे. याच अनुषंगाने 'संशोधक' अंकात प्रकाशनाकरिता करण्यात येते की, आपल्या 'संशोधक' अंकाचा दर्जा सतत उंचावत ठेवणे हे सर्वश्री मा.सभासद, संशोधक, लेखक, अभ्यासक यांना विनम्रपणे आवाहन

१) शोध निबंधांची पृष्ठसंख्या ही मर्यादित असावी. त्याकरिता किमान १५०० शब्द ते कमाल २००० शब्दांची मर्यादा पाळावी.

२) संदर्भ देताना संशोधन पद्धतीचा अवलंब कराबा. उदा. भागरे डॉ.सर्जेराब, *आदिवासीचे उठाव*, अपरात प्रकाशन, पुणे, २०१५, पृ.२५.

अ) स्वतः लेखक असल्यामुळे तसा उल्लेख करावयाची आवश्यकता

ब) माळी डॉ.मा.गो. (संपा.), *सावित्रीबाई फुले काल आणि कर्तृत्व*, क) बरील संदर्भ क्रमाने आला असता तत्रैब किंवा किता म्हणाबे. पृ.बदलले महाराष्ट्र राज्य साहित्य आणि संस्कृती मंडळ, मुंबई, २००६, पृ.६५.

ड) बरचा एखादा संदर्भ काही संदर्भानंतर आल्यास उपरोक्त किंवा पूर्वोक्त तर तत्रैव, पृ.क्र.(पृष्ठक्रमांक टाकावा) असे म्हणावे. क्रमाक दावा. तेही बरील संदर्भ असा सरळ निर्देश व्हाबा म्हणून बरील संदर्भांचा लेखक किंवा संपादकाचे नाव देवून मग उपरोक्त किंवा पूर्वोक्त लिहिणे लिहिण्याची पद्धत आहे. मात्र नुसतेच उपरोक्त किंवा पूर्वोक्त न लिहिता

इ) संदर्भसूचीमध्ये देण्यात आलेला संदर्भ क्रमांक शोधनिबंधात त्या-त्या उदा.डॉ.सर्जेराव भामरे, उपरोक्त क्र.०१, पृ.६१, असा स्पष्ट उल्लेख

(F)

93992494492494092c94791f20.02.2022 92e93993e93093e93794d91f94d930- 91593f93294d932947/

4.https://mr.vikaspedia.in/education/apalamaharashtra/ 93992494492494092c94791f20.02.2022 92693993693093693794d91f94d930-91593f93294d932947/

5.https://mr.vikaspedia.in/education/apalamaharashtra 93992494492494092c94791f20.02.2022 92e93993e93093e93794d91f94d930-91593f93294d932947/

6.https://www.esakul.com/marathwada/world-tourism-day-७. हतीबेट येथे प्रत्यक्ष भेट आणि निरीक्षण २०.०२.२०२२ specialstoryhattibet-becomes-mini-matheran-35138720.02.2022

८. कुंटे मोरश्वर व सी.कुंटे विजया, *देवदर्शन जिल्हा लातूर*, मंदिर कोश प्रकाशन, पुणे, २००१, पृ.२२०, २२१.

https://www.esakal.com/marathwada/world-tourism-day-special- https://www.lokmat.com/latur/all-buses-devarjan-hattibet-routestory-hattibet-becomes-mini-matheran-351387 20.02.2022

 https://www.esakal.com/marathwada/hattibet-gets-tourist-statusclosed-u693/20.02.2022 267415 20.02.2022

🧩 इतिहासाचार्य वि.का. राजवाडे संशोधन मंडळ, पुळे.

छत्रपती शिवाजी महाराजांचे वाणिज्य धोरण

- डॉ. मधुकर जाधव, हलकर्णी, जि.फोल्हापूर

एकमेवाद्वितीय असे होते. छत्रपतींच्या स्वराज्याचे अंदाजपत्रक होते. स्वराज्याच्या शासनव्यवस्थेत विविध खाती व उपखाती होती. स्वराज्यातील प्रत्येक खात्यावर काही रक्कम ही दरवर्षी संभाव्य अङचर्णीचा सामना करण्यासाठी शिलकीत किती रक्कम खर्च करावयाची याचे अंदाजपत्रक तयार केले जात असे. त्यातील ठेवली जात असे. योग्य नियोजन करून छत्रपतींनी आर्थिक धोरणाची आखर्ण वाणिज्यविषयक बाबींचा समावेश केला. मूल्यमापन, सोन्या-चांदीचा व्यवहार करणे, हुंड्या देणे व घेणे आदि त्यासाठी आर्थिक व्यवहारामध्ये ठेवी स्वीकारणे, चलनाचा विनिमय, नाण्यांचे केली. 'पैसा वाढविणे म्हणजे पैसा कमवणे' या तत्त्वाचा नेहमी पाठपुराया केला छत्रपती शिवाजी महाराजांचे वाणिज्य विषयक धोरण आश्चर्यकारक व

वाणिज्य व्यवस्थापनाचे वैशिष्ट्य :

खर्च केला जात नसे. स्वराज्याचे उत्पन्न दिवसेंदिवस कसे वाढेल याचा छत्रपती काटकसर हे महाराजांच्या अर्थव्यवस्थेचे वैशिष्ट्य होते. स्वराज्यामध्ये विनाकारण कायम विचार करत असत हे त्यांच्या वाणिज्यविषयक धोरणावरून स्पष्ट होते. वाणिज्य व्यवस्थापन सुरक्षित ठेवण्यासाठी त्यातील खजिना महाल महत्त्वाचा स्वराज्याची राजधानी किल्ले रायगडावरती बारा महाल सज्ज होते. स्वराज्यातील मानला जात असे, कारण या महालामध्ये पैशाची साठवण केली जात होती खिना महालात पैशाच्या रुपाने येणारी रक्कम त्या काळी धातूच्या नाण्याच्या महाल' म्हणत. स्वराज्यामध्ये या महालाला महत्त्वाचे स्थान होते. अशीच लागे. या खिजना ठेवण्याच्या व्यवस्थेला किंवा खात्याला 'खिजन स्वरुपात येत असे. त्यामुळे पैशाची साठवण करण्यासाठी जागा व इमारत सुरक्षित छत्रपतींनी काटेकोर नियोजन करून अर्थव्यवस्था मजबूत केलेली होती.

वाणिज्य धोरणातील हुंडीचे महत्त्व :

स्वराज्यातील अर्थव्यवहारातील वाणिज्य दृष्ट्या सोयीसाठी हुंडी आणि

सून २०२२

वरत वांचा वापर केला जात असे. आर्थिक देवघेवीसाठी व जास्तीत जास्त प्रवासानध्ये याचा बागर केला जात असे. नाण्यांचा व्यवहार स्थानिक पातळीबर कता जात होता. प्रवासात नाम्यांच्या साह्याने आर्थिक व्यवहार करणे अशक्य डे इतिहासाचाचं थि.का.राजवाडे संगोधन गडक, धुन्ने होते. व्यवहाराच्या रकमा मोठ्या असल्यामुळे ती पैशाच्या रुपाने जवळ बाळाण अजन्य असे. त्यामुळे हा व्यवहार डिमांड ड्राफ्ट्रारे केला जात होता. त्यामध्ये हुंद्री आणि बरात बांना महत्त्व होते. आपल्याकडील स्वकम एका गावातील पेढीयः भरून तेवढीच रक्कम दुसऱ्या गावातील त्याच व्यापाऱ्याच्या पेढीवर फिटेन अभी व्यवस्था करता यहे. वे पत्र वासाठी दिले जात असे त्याला हुंडी म्हणता. हुंड्यांच्या देववेवीमध्ये मोठ-मोठ्या रकमांची उलाढाल होत असे. असं म्हणत. वालाच आपण सध्याच्या आधुनिक काळात बैंक-ड्राफ्ट असे मालादी किंवा बस्तूबी बिक्री करणाऱ्या व्यापाऱ्याने माल खंदी करणाऱ्या हुंडी रेणाग व्यापारी किया व्यक्ती माल विकत घेणाऱ्याला अंगा हुंड्या रेत भागमाच्या नावाने केलेला एक अंहव्हान्स म्हणजेच उपारीचा ट्रस्तऐवज होय.

हुंबच प्रकार : ताबड़तीब रक्टम गांख दिली जात असे. त्याला दर्शनी हुंडी प्रणतात. म्हणजेच लहाणी व बरात यांचा समावेश होत असे. हुंडी पेढीवर सादर केल्याबरोबर एका पढीवा रक्कम भाल्याम सदाह रक्कम दुसऱ्या पढीवा रोखीच्या रूपाने रेण्याबदलकी सुकना ज्या हंडीमध्ये असे त्याला दर्शनी हंडी असे म्हणत. मुदती हुंडी म्हणजे मुदर्तीने रक्कम देणे होय. एखाद्याला विशिष्ट कालावधीनंतर रोख रक्षम दृष्याबदलची सूचना असणाऱ्या हुंडीला मुदती हुंडी प्हणत असत. एखाद्या भरतेली असेल व त्याबद्दल हुंडी पहिल्या पेढीच्या नावे घेतली असेल तर अशा व्यक्तीने एखाद्या वेढीवर हुंडी दिली व त्याची त्या वेढीमधील खात्यामध्ये पुरेशी ख़कम शिल्लक नसेल तर त्याने दुसऱ्या एखाद्या पेढीमध्ये सदरची खकम रोख मराठा कालखंडामध्ये हुंडीचे प्रामुख्याने चार प्रकार होते. दर्शनी, मुदती,

र्काना लहानी हुई। असे म्हणत."

इतिहासाचार्च वि.का. एजवाडे मंशोधन मंडळ, धुळे.

नोकरांकडून अथवा इतर खाजगी व्यक्तींकडून रकमा वसूल करावयाचे असे तेव्हा त्याला वरात असे म्हणत. े पैशांविषयी लेखी हुकूम कागदोपत्री काढणे म्हणजे वरात होय. एखाद्या व्यक्तीला त्याची रक्कम परगावी द्यावयाची असेल तर ती रक्कम त्या गावात त्याला मिळावी यासाठी लेखी हुकूम काढला जाई. ज्या ठिकाणी बरात काढली असेल त्या ठिकाणी जर तेवढी रक्कम नसेल तर बरात वटत नसे. म्हणजेच चेक ज्याप्रमाणे खात्यावर काही वेळेस रक्कम नसल्याने वटत नाही त्याप्रमाणे ही वरात पद्धत असे. म्हणजेच आजच्या काळात यालाच बंक चंक असे म्हणतात.

राख पगार : दिले नाहीत. या संदर्भात सभासद बखरीमध्ये याचे वर्णन आले आहे." छत्रपतींनी सर्वांना रोख रकमा म्हणजेच पगार व बक्षीसे दिली.' छत्रपतींनी सागरी किनारपट्टीवर ठेवले होते. आरमारातील अधिकाऱ्यांना देण्यासाठी सरकारातून हुंडी पाठवली नव्याने किल्ले पद्मदुर्गीची उभारणी केली. तेथे प्रभावळीच्या सुभेदायला देखोरखीखाली होती. म्हणजेच खर्चासाठी स्वराज्यामध्ये सर्रास हुंडीचा वापर केला जात होता. छत्रपर्तीनी स्वराज्यातील अधिकारी वर्गाला रोख पगार दिले. मोकासे कोणास

बचतीच धारण :

स्रवृत दिलेल्या बाजारभावानेच वस्तूची खोदी-विक्री होत असे. यासाठी स्वराज्याचे कडक नियम होते. हा नियम मोडणारावर कठोर कारबाई होत असे. जर शेतक-यांकडे याची काळजी घेतली जात असे. स्वराज्यातील रयतेला छत्रपतींनी ऐन जिनसी बाजारभावाप्रमाणे पैसे दिले जात असत. शेतकऱ्यांना कोणतीही झळ पोहोचू नये आगाऊ माल शिल्लक राहिला तर तो माल शासन खोदी करीत असे व शेतकऱ्यांना मदत केली. स्वराज्याची अर्थव्यवस्था नेहमी शिलकी होती. माता जिजाऊंच्या मृत्युनंतर आऊसाहेबांच्या शिलकीत एक कोटी रुपयांची दौलत शिल्लक होती. ही शिल्लक रक्कम स्वराज्यातील सर्व रयतेसाठी. स्वराज्यात विविध खात्यांवर पैसा खर्च केला जात असे. या खात्यांना कारखाने व महाल असे म्हटले जाई. १८ कारखाने व १२ महाल छत्रपती शिवाजी महाराजांच्या राज्यकारभारात होते. बचतीचे धोरण हे छत्रपतींच्या अर्थव्यवस्थेचे मुख्य वैशिष्ट्य होते. छत्रपतींनी

···· फ्लोक्ट फान्यावर स्वतंत्र अधिकारी नेमला जात असे. त्याचबरोबर **ही** खाती

संयोधक

Journal Details

Journal Title (in English Language)

SandroBuk (print only) | (Ciccum Edits of Content)

Journal Title (in Regional Lungways)

titilan (print only)

Publication Language

English , Marethi

Publisher

Ithasacharya V. K. Raywalc Sumbodius Mandel

ISSN

2394-5990

E-ESSN

NA

Discipline

Arts and Humanities

Subject

Arts and Humanition (stf)

Focus Subject

History , Literature and Literary Theory

UGC-CARE coverage years

flore April-2021 or Present

Cappropht C 2023 Sections Phote Foor University. All rights reserved. | Dischaimer

Special Issue UGC CARE Listed Journal ISSN 2278-6864

Education and Society

The Quarterly dedicated to Education through Social Development and Social Development through Education

February 2023

(Special Issue-1/ Volume-II)

INDIAN INSTITUTE OF EDUCATION

128/2, J. P. Naik Path, Kothrud, Pune - 411 038

Indian Institute of Education

Education and Society

Special Issue on the theme of 'Human Life and Techonology'
(Special Issue for two days National Seminar organized by Shripatrao Chougule Arts and Science College Malwadi-Kotoli dated 7 February 2023)

Prof. J. P. Naik and Dr. Chitra Naik

Founder of the Institute

Mr. Sanjeev S. Sharma Administrator

Editorial Board:

Dr. Jayasing Kalake, Chief Ediotr Dr. Prakash B. Salavi, Executive Editor Mrs. Shailaja D. Sawant, Secretary

Publisher:

Indian Institute of Education J. P. Naik Path, Kothrud, Pune- 38

Contact Numbers: 8805159904, 9834109804

Web-site: www.iiepune.org

Email: educationandsociety1977@gmail.com, iiepune1948@gmail.com

Education and Society, the educational quarterly is owned, printed, and published by the Indian Institute of Education, Pune, It is printed at Pratima Mudran, I-B, Devgiri Istate, Survey No. 17/1-B, Plot no. 14. Kothrud Industrial Area. Kothrud, Pune 38. It is published by the Editor Dr. Jayasing Kalake at Indian Institute of Education J. P. Naik Path, Kothrud, Pune- 38. Opinions or views or statements and conclusions expressed in the articles which are published in this issue are personal of respective authors. The editor, editorial board and the institution will not be responsible for the same in any way.

Editorial

It is very pleasurable thing that Shripatrao Chougule Arts and Science College Malwadi-Kotoli dated 7 February 2023 orgranised one day National Seminar on the theme of 'Human Life and Techonolgy' with the collaboration of Shivaji University and Global Foundation, Solapur dated 7 February 2023.

The scholars of different faculties presented their papers on different subthemes and contribute in the ideology of Multidisciplinary education expressed by NEP 2020. The College requested to publish the selected papers in our journal that presented in the seminar. So, we decided to publish all the articles in our journal for the convenience of the new-comerce scholars.

Dr. Praveen G. Saptarshi, Visiting Professor, Salisbury University, USA, Dr. F. M. Nadaf, Deputy Director. Directorate of Higher Education, Government of Goa, and Dr. Babalola Ayodele Samuel, Dept. of Pure and Applied Zoology, Federal University of Agriculture, Ogun State, Nigeria, Africa have contributed as keypersons in the conference.

Dr. B. N. Ravan, IQAC Co-Ordinator and Smt. Dr. V. P. Patil, I/C Principal have greately taken efforts to success in this conference that I realised while overview of the presented research papers and articles. Our best wishesh will be there for the academicians and research scholars to implement the varieties of extra-curricular, extra-ordinary state, national and international level academic activities like seminar, workshops, conferences etc. The education is not only happening in the class. It is eternal process of life long learning and it is flowing. Therefore, we are always with the striving people into achieving the goal of success of education to all.

Dr. Prakash B. Salavi Executive Editor,

'Education and Society', Indian Institute of Education. Pune

	Page No
Titles	
 1. नंदुरबार जिल्ह्यातील आदिवासी लोकजीवनावरील आधुनि	के तंत्रज्ञानाच्या प्रभावाचा
अभ्यास	10
डॉ. शरद बाबुराव सोनवणे	
 2. उद्योगांमुळे होणारे हवा प्रदूषण नियंत्रित करणाऱ्या उपाययो	जिनांचा अभ्यास
2. उद्योगामुळ हाजार हुन न्यू प्रा. डॉ. सुरेश जे. फुले, श्री. दिपक हि. महाजन	15
प्रा. डा. सुरश ज. फुल, श्रा. १५२२ रट. १८१	
3. खाडी प्रदेशातील जल प्रदूषण कमी करण्याच्या उपाययोज	ानांचा अभ्यास करणे
ग्र. डॉ. सुरेश जे. फुले, श्री. नंदकुमार मनोहर गोसावी	18
	रे परिणामः अक्कलकोट 21
5. शिवकालीन किल्ला स्थापत्य: राजधानी रायगड	
डॉ. सुवर्णा प्रकाश पाटील	29
6. इयत्ता नववीच्या विदयार्थ्यांना भूमिती विषयाच्या त्रिकोण संगणक सहाय्यित अध्यापनाच्या परिणामकारकतेचा अभ्या	 गमितीय गुणोत्तरे पाठयांशासा स
	34
डॉ. प्रतिभा सदाशिव देसाई	
7. आदिवासींची शेती आणि तंत्रज्ञान	

48. Awareness on Utilization of what's App for Educational Purpose	among
Undergraduate Students	
Dr. S. R. Sundaravalli and B. Gunasekar	236
49. Artificial Intelligence Technology and National Policy	
Dr. Prakash Laxmanrao Dompale	244
50. Representation of Detection and Police Procedure in Louise Pen novel 'Still Life'	ny's
Mrs. Megha Lakshman Dhanawade and Prof. (Dr.) I. R. Jarali	249
51. Gender and the Emergence of Modern Indian Entrepreneurship Innovation	and
Himansu Kumar Mandal	252
52. Artificial Intelligence in Agriculture	
Miss Gujar Savita Maruti	259
53. Gauging the Role of Agricultural Marketing in Indian Agribusin	ness
Sandeep Rout, Swarup Ranjan Barik, Sonia Panigrahi and Lipsa Dash	265

Representation of Detection and Police Procedure in Louise Penny's novel 'Still Life'

Mrs. Megha Lakshman Dhanawade Research Scholar, Department of English, Shivaji University, Kolhapur

Prof. (Dr.) L. R. Jarali Professor, Dept. of English,

Y. C. College, Halkarni, Tal- Chandgad, Dist- Kolhapue

Abstract:

The present study tries to analyse and represent the detection and police procedure in Louise penny's novel, 'Still Life' in which writer reveals a thrilling mystery that is set in a remote area of Guebec. The Chief Inspector Armand Gamache and his team of investigators are called to investigate the suspicious death of Jane Neal. It depicts a local fixture in Three Pines just north of the U. S. Boarder. A chief Inspector Armand Gamache of the Suretedu Guebec official investigation the death of Jane Neal, a 76-years-old retired schoolteacher who lived in the small town of Three Pines in Quebec, Canada. It creates shock waves throughout the close-knit community to help solve the mystery of her death. Chief Inspector Gamache and his team are called to solve the mystery and crime and began their investigation.

The novel 'Still Life' is compelling central mystery which is a major thread of Penny's novel. It provides insightful commentary to the readers on country life where the tension between the individual and the collective. The novel, 'Still Life' introduces not only an engaging series hero of Inspector Gamache, who commands his forces and this series with integrity and quite courage, but also winning and talented new writer traditional mysteries.

Penny introduces readers to the captivating Inspector Gamache and his unwavering commitment to justice through this story. The novel offers readers an exciting journey as they follow Gamache in his pursuit of truth and a killer. It explores the mystery of Jane Neal's death with its intriguing plot and characters. Louise Penny's 'Still Life' is sure to be a great example of crime, mystery, and detection. It creates a pictorial history of three pines and its residents.

Keywords: Crime, Detection, Police Procedure, Investigation, Mystery, Community

Introduction:

'Still Life' is the debut novel written by renowned mystery writer Louise Penny. It is published by St. Martin's dated on 1st January 2005. The novel provides rich recognition to the writer in the tradition of crime and mystery fiction.

Louise Penny introduces major character and investigator Monsieur L Inspector Armand Gamache of the Surete du Quebec, a modern Poirot who anchors this beloved traditional mystery series. The story was adapted into a film called the Still life: A Three pines mystery in 2013 which latter won the prestigious Anthony Award for Best first novel in the 2007, also the novel won various awards the New Blood Daggar, Arthur Ellis, Barry, Anthony and Dilys awards. At the beginning of Still Life, it is stated that "violent death still surprised" Chief Inspector Armand Gamache. Why is that odd for a homicide detective, and how does it influence his work? What are his strengths and his weaknesses?

'Still Life' means drawing is literally drawing things that are still in life. The novel is set in the small village of the Three Pines, Quebec Canada. The plot of the novel is light on the official investigation following the death of Jane Neal, who is 76 years old retired school teacher. The victim Jane Neal lived in the small town of Three pines in Quebec Canada. Jane is found dead in the wood, just two days after deciding to submit her art work for an exhibition for the first time ever. Chief Inspector Armand Gamache call to investigate the mysterious death of Jane Neal and he started homicide Investigation. He keenly examining the crime scene, he and his team found evidence that Jane was killed by a local hunter.

The life journey and the investigation process, consider Gamache's advice to Nichol: "Life is choice. All day, every day. Who we talk to, where we sit, what we say, how we say it. And our lives become defined by our choices. It's as simple and as complex as that and as powerful." Similarly, Myrna stopped practicing psychology because she lost patience with people who lead "still" lives, "waiting for someone to save them.... The fault lies with us, and only us. It's not fate, not genetics, not bad luck, and it's not Mom and Dad. Ultimately, it's us and our choices." How do their choices affect the principal characters in the novel? Do any of their choices remind you of ones you have made in your own life? (124)

When tracers of Jane's blood are found evidence which is collected at the Croft's home by Gamache confronts Mr. and Mrs. Croft. However, he becomes ensure what to do when the evidence point to Philippe croft Matthew's Sun, while Mathew confesses the crime, when he disobeys an order from his superior officer to arrest Mathew croft, Gamache is suspended a few days later, one of the Crofts arrows is found in the wood, officially clearing them Philippe through the accidently killed Jane and his father confessed to protect him.

Gamache has reinstated the investigation process of the death of Jane. He obtains a warrant to enter Jane's house and found tacky wallpaper covering the walls. He discovers that Yolande put up the wallpaper to cover Jane's art, which she drew all over the walls, creating a pictorial history of the three pines and its residents. He also uncovers a previously unknown Will leaving Jane's house. Clara, and Ben work to remove Yolande's Wallpaper and reveal Jane's Art. The art exhibits that day examine Jane's painting of the art exhibition arrives. Fairday, which depicts the closing parade of the country fair, held on the day Ben's mother died. Clara notices that one face-Ben's has been removed and painted over. She doesn't tell anyone but realizes that Ben must have killed Jane. She confronts Ben, who takes her into the basement of his mother's House to kill her Gamache pieces together what happened and arrives on the scene but in his injured in the process

Chief Inspector Armand Gamache of the Surete due Quebec and his team of investigators are called into the scene of suspicious death in a rural village of South of Montreal. J ane Neal a local fixture in the tiny hamlet of Three Pines just north of the U.S. border, has been found dead in the woods the locals are certain. It is a tragic hunting accident and nothing more but is soon certain that Jane Neal died at the hands of someone much more sinister than a careless bow-hunter.

The novel introduces not only an engaging series hero in Inspector Gamache, who command his forces and this series with integrity and quite courage but also a winning and talented new writer a traditional mystery. It is rightly said that, "Life is change. If you aren't growing and involving, you're standing still and the rest of the world is surging ahead. Most of these people are very immature. They lead "still" lives waiting." (167)

Penny introduces readers to the captivating Inspector Gamache and his unwavering commitment to justice through this story. The novel offers readers an exciting journey as they follow Gamache in his pursuit of truth and a killer. Gamache is convinced, 'there is a darker force at play still life is sure to keep you on the edge of your seat as it explorers the mystery of Jane Neal's death with its intriguing plot and characters Louise penny's still life.' The village of Three Pines is not on any map and Chief Inspector Armand Gamache is the homicide detective at the beginning of still life.

There are three main couples in the present story Clara and Peter, Oliver and Gabri and Reine-Marie. There's huge clue to the murder early in the book when Jane gives Ben a meaningful look and then quotes from W. H. Auden's book, "Evil is inspector unspectacular and always human and shares our bed and eats at our own table." Clara has "Very specific tests" in murder my stories: most of them were British and all the village cozy variety.

In 'Still Life' is not only everything idyllic, but of course - we get a little mild homophobia. The main characters are all totally non-homophobic, non-racist, non-greedy, non-selfish and non-everything that makes fictional people generally repugnant but interesting. Hence, the story captured the mind of the readers, and tries to over think about the murderer. It follows the rich tradition of crime and mystery fiction along with detection and police procedure.

Reference:

- 1. Penny, Louise Still Life St. Martin Paperback: New York, 2005
- Wagner, But. "What Let Them to a Life of Crime". Toronto Star, Toronto on Canada: 2010. Print
- Kelly, Brendan. Louise Penny's Detective Novels Get Small Screen Treatment CBC-TV: Montreal Gazette
- 4. Retrieved 2012, Print
- 5. Scaggs John. Crime Fiction (The New Critical Idioms) Routledge, 2005: Print

2, 35, Downloaded from https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.020202791 by Librarian In-Charge, Wiley Online Library on [05/1/20022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Ceraive Commons Licensea

www.chemistryselect.org

Tropylium-BF₄ as Organocatalyst for Efficient Synthesis of Nitriles from Aldoximes; Synthetic Scope and Mechanistic Insights

Athmanand Anchi, [a] Suraj M. Sutar, [a] Rajesh G. Kalkhambkar, *[a] Gabriela L. Borosky, *[b] and Kenneth K. Laali*[c]

Structurally diverse aldoximes were conveniently transformed within minutes to the corresponding nitriles by using tropylium BF₄ as organocatalyst, in 1-butyl-3-methylimidazolium ionic liquids (BMIM-ILs) as solvent, under microwave irradiation. The scope of this convenient, cyanide free, process for nitrile synthesis was explored, and DFT computations were employed to shed light on the mechanistic steps of this catalytic reaction leading to dehydration.

Introduction

Nitrile groups are widely present in natural products, pharmaceuticals, dyes, and polymers. Moreover, the -CN group is a highly versatile synthon that can be converted to a number of other significant functional groups such as amides, amines, aldehydes, and ketones.[1-5] Whereas numerous methods for the synthesis of aromatic and aliphatic nitriles have been developed over the years, [1-5] the guest for the development of new, environmentally more acceptable, cyanide free methods continues. To this end, nitrile synthesis by dehydration of aldoximes has received considerable attention. Some of the more recently reported reagents for the preparation of nitriles from aldoximes are acetic anhydride/acetic acid, [6] triflic anhydride, [7] trichloroacetonitrile, [8] SO₂F₂, [9] and 4-nitro-triflylimidazole.[10] The latter reagent is closely related to triflylimidazole reported by us for aldoxime to nitrile conversion almost a decade earlier.[11] Complementing these dehydration routes are chemoenzymatic methods developed for enantioselective synthesis of chiral nitriles. [12,13]

A recent study reported on the use of in-situ generated chlorotropylium chloride as catalyst for conversion of oximes to amides and nitriles.^[14] The onium salt was generated from tropone and oxalyl chloride (loss of CO and CO2) in MeCN

[a] A. Anchi, S. M. Sutar, Dr. R. G. Kalkhambkar Department of Chemistry, Karnatak University's Karnatak Science College, Dharwad Karnatak 580001, India E-mail: rgkalkhambkar@gmail.com

[b] Dr. G. L. Borosky INFIQC, CONICET and Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina E-mail: gborosky@fcq.unc.edu.ar

[c] Prof. Dr. K. K. Laali Department of Chemistry, University of North Florida, 1, UNF Drive, Jacksonville, Florida 32224. USA

E-mail: Kenneth.Laali@UNF.edu

Supporting information for this article is available on the WWW under https://doi.org/10.1002/slct.202202791

solvent using syringe pump, followed by addition of DBU to effect deprotonation of the aldoxime-tropylium adduct to form nitrile.[14] In relation to our long-standing interest in preparation and synthetic application of carbocation and onium salts, [15-17] and encouraged by the recently reported efforts to repurpose/ utilize some of these compounds as organocatalysts in synthesis, [18,19] we report here on the efficacy of the readily available tropylium-BF₄ as organocatalyst for aldoxime to nitrile conversion, using a very simple set up, employing BMIM-ILs as solvent.

The BMIM-ILs are ideal solvents for synthetic method development involving carbocation and onium salts,[15,16] while also providing the opportunity for recycling and reuse. In an effort to shed light on the mechanistic steps of this catalytic reaction leading to dehydration, a DFT computational study was performed.

Results and Discussion

Synthetic Aspects

At the onset, benzaldoxime was selected as model to determine efficacy. Working in conventional solvents, low yields of PhCN were obtained by heating in DCE and DMF for extended periods (entries 2-3, Table 1). Improved yields were realized at lower temperatures and shorter reactions times by using MeCN (entry 4, Table 1). These observations correlate with the relative solubility of tropylium salt in these solvents (Table S1). By switching to [BMIM][BF₄] better conversions were reached in relatively short times (entries 5-6, Table 1). By applying microwave (MW), a 90% yield could be reached after 10 minutes (entry 8, Table 1). Employing [BMIM][PF₆] as solvent resulted in 83% isolated yield after 10 minutes under MW irradiation. Based on these initial studies, [BMIM][BF4] was selected as solvent of choice for the study of the scope of this transformation.

A library of benzonitriles bearing diverse substituents were synthesized in respectable isolated yields by using 10 mol% of tropylium-BF₄ in [BMIM][BF₄] as solvent under MW (entries 1-11, Table 2). Reactions could also be performed in the recycled

2, 35, Downloaded from https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.020202791 by Librarian In-Charge, Wiley Online Library on [05/1/20022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Ceraive Commons Licensea

Table 1. Optimization of reaction conditions for synthesis of PhCN. [a]							
Entry	Solvent	Temperature(°C)	Time	Yield ^[b] (%)			
1	DCM	50	12 h	Trace			
2	DCE	80	5 h	22			
3	DMF	100	3 h	47			
4	MeCN	80	3 h	64			
5		50	3 h	61			
6		80	2 h	78			
7	[BMIM][BF ₄]	NAVA/	5 min	87			
8		MW	10 min	90			
9		50	3 h	60			
10		80	2 h	72			
11	[BMIM][PF ₆]		5 min	81			
12		MW	10 min	83			

[a] Reaction condition: Benzaldoxime (1 mmol), Tropylium-BF₄ (10 mol%), Conventional Solvents (5–15 mL), [BMIM][X] (2–3 mL). [b] Isolated yield of the nitrile product.

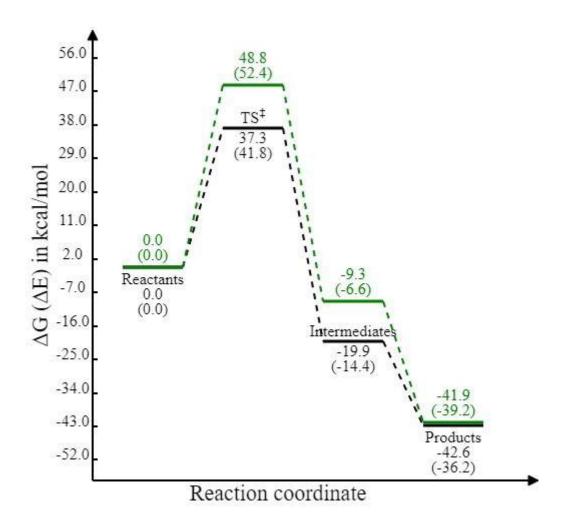
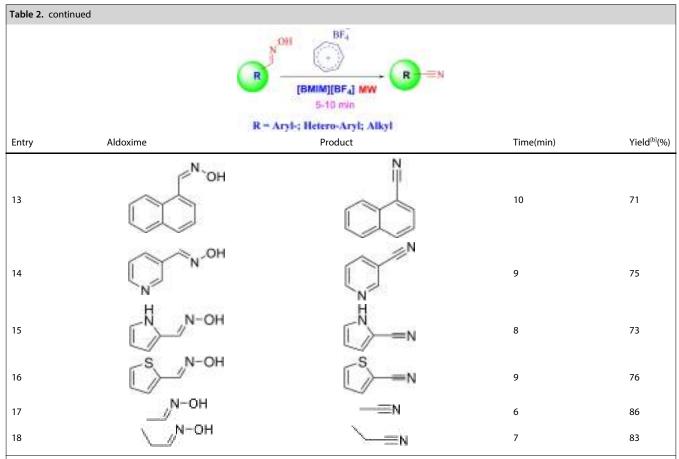



Figure 1. Free energy (energy) profile for the dehydration reaction of (E)-benzaldoxime (gas phase values in black, results in MeCN solvent in green). Figure 1 is inserted too early. It should be inserted after Table 2, in the Computational Study section.

IL, without a significant impact on isolated yields (entries 2 and 7, Table 2). Efficacy of the recycling/reuse of the IL solvent was independently checked by using benzaldoxime as model and repeating the reaction up to four cycles (Figure S1). Reactions were extended to polycyclic (entries 12, 13) and heterocyclic aromatic aldoximes (entries 14-16). In entry 12 an isolated yield of 68% was reached by using a recycled IL for the 4th time. Representative aliphatic aldoximes were also converted to the

2365649, 2022, 35, Downloaded from https://chemistry-europe.on/lichbrary.wiley.com/doi/10, 1002/ett.202202791 by Librarian In-Charge, Wiley Online Library on [05/12/2022], See the Terms and Conditions, wiley.com/etrms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses and Conditions, wiley.com/etrms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses are the conditions of the Cond

[a] Reaction condition: Aldoxime (1 mmol), Tropylium-BF₄ (10 mol %), [BMIM][BF₄] (3–4 mL). [b] Isolated yield. [c] Yield using recycled IL (2nd cycle). [d] Yield using recycled IL (3rd cycle). [e] Yield using recycled IL (4th cycle).

nitriles in good yields (entries 17–18). The crucial role of tropylium as organocatalyst for this reaction was underscored in control experiments, by heating benzaldoxime in BMIM-IL in the absence of tropylium, where no conversion was observed even after prolonged heating.

Computational Study

With the aim of unveiling the catalytic role of the tropylium salt in the dehydration reaction of aldoximes to yield nitriles, DFT calculations were performed for (E)-benzaldoxime as a model compound (Figure 1). The computed path revealed the generation of an intermediate via covalent bond formation between the hydroxyl anion and tropylium cation Tr⁺. According to the observed mechanism, coupling of the HO⁻ anion to Tr⁺ took place early on the reaction coordinate, but in concert with the proton transfer from C to BF₄⁻; that is, both transfer processes were concerted but asynchronous. In this way, the HO⁻ migration occurred while the energy was increasing, whereas the proton was transferred at the transition state (TS) of the first reaction step. This proton transfer was achieved through an initial hydrogen bonding to BF₄-, yielding nitrile and complexed BF₃ - HF. In the second step, OH protonation by HF took place without activation energy, leading to spontaneous release of H_2O , regenerating the tropylium. Although the observed activation barrier was high ($\Delta G^{\neq}=37.3$ kcal/mol, gas phase value), the overall reaction path was very exoergic ($\Delta G_r = -42.6$ kcal/mol, gas phase result).

In comparison, with MeCN as solvent, the first step afforded a protonated nitrile (nitrilium ion), which in the second step transferred this proton to the OH group (Figure 1). This mechanistic change stems from the favored stabilization of ionic species by a polar solvent, in contrast to the neutral system generated in the gas phase. Because charge separation decreased in the TS, solvation by MeCN increased the energy barrier to $\Delta G^{\neq}=48.8$ kcal/mol, while the total exoergicity of the reaction was retained ($\Delta G_{\rm r}=-41.9$ kcal/mol).

For comparison, the same mechanistic path was also evaluated for (*Z*)-benzaldoxime. The DFT energies observed for the *Z*-isomer were more favorable, with a decrease in the barrier of *ca*. 5 kcal/mol, and an increment of about 7 kcal/mol in the exoergicity for the whole process (Figure 2). This can be ascribed to a deformed and, consequently, higher-energy *Z*-aldoxime structure in the initial noncovalent complex formed by the reactants, in which the HC=NOH group is rotated by 49 degrees out of the plane of the phenyl ring, while this deviation is only 14 degrees in case of the *E*-isomer. Accordingly, in this complex the *Z*-isomer exhibited longer Ph-

2, 35, Downloaded from https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.020202791 by Librarian In-Charge, Wiley Online Library on [05/1/20022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Ceraive Commons Licensea

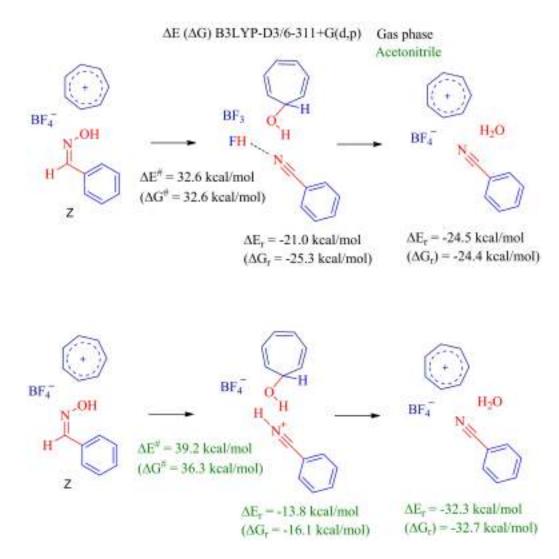
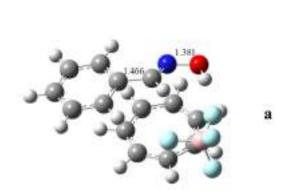
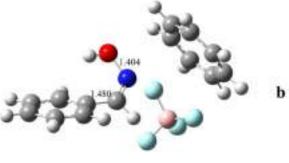
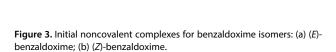


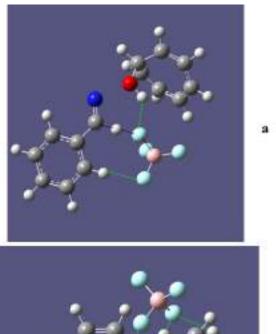
Figure 2. Dehydration reaction of (Z)-benzaldoxime (gas phase values in black, results in MeCN in green).


CH and N-OH bond distances (Figure 3). While both transition states presented similar energies, for the *Z*-isomer the initial complex was around 7 kcal/mol less stable than the corresponding *E*-aldoxime complex. In MeCN as solvent, the activation barrier for (*Z*)-benzaldoxime was lowered by about 13 kcal/mol as compared to the *E*-isomer, whereas the general exoergicity increased by *ca*. 7 kcal/mol.


Bearing in mind the positive role of [BMIM][BF₄] as solvent for Tr⁺ catalyzed dehydration, we set out to evaluate the mechanism for a ternary system consisting of (*E*)-benzaldoxime, Tr salt, and [BMIM][BF₄]. In this model, [BMIM][BF₄] interacted with the aldoxime and tropylium by forming several hydrogen bonds (Figure 4), while at the same time the activation energy increased by around 10 kcal/mol, and the exoergicity decreased by *ca.* 20 kcal/mol in the gas phase (Figure 5). Solvation with MeCN further increased the barrier by 5 kcal/mol, while improving the exoergicity by 16 kcal/mol. Unfortunately, due to absence of the needed parameters in Gaussian 16, this model study could not implement solvation effects due to [BMIM][BF₄], nor the effect of microwave irradiation. Interest-


ingly, in MeCN as solvent the energies evaluated with and without the presence of IL were similar, suggesting that [BMIM][BF₄] may not have a significant role in solvation effects governing the general energetics of the mechanism, and that its primary function may be to improve the solubility of tropylium salt. The computed high activation energies, along with the expected rise in energy barriers by polar solvents, could rationalize the experimentally observed positive effect of microwave irradiation to enhance the reactivity.


Finally, in order to ascertain if [BMIM][BF₄] could itself act as an organocatalyst via complexation to the aldoxime, the same reaction path was computed for the aldoxime/IL system (Figure 6). This assumption was discarded on the basis of the endoergicity found for the first reaction step; moreover, the corresponding TS could not be located, implying that this process would present a particularly high energy barrier. This finding is in concert with the experimental observation.


Europe

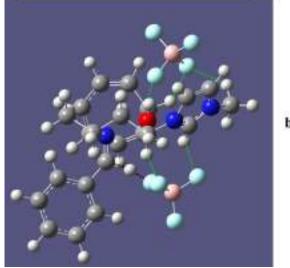


Figure 4. Transition states for the: (a) binary system ((E)-benzaldoxime/ tropylium salt); (b) Ternary system ((E)-benzaldoxime/tropylium salt/ [BMIM][BF₄]). Forming/breaking bonds are displayed as dashed black lines. and hydrogen bonds are shown as dotted green lines.

Conclusions

We have reported a convenient, cyanide free, process for nitrile synthesis by dehydration of aldoximes employing Tr⁺BF₄⁻ as organocatalyst and BMIM-BF₄ as solvent under MW irradiation and examined the scope of the reaction. To shed light on the mechanistic steps leading to dehydration, a DFT model study was performed. A two-step pathway was computationally determined, which involved the coupling between hydroxyl anion and tropylium cation to form a covalent intermediate, and water release that regenerated the tropylium salt. Although the overall reaction path was very exoergic, the calculated high activation barrier explains the enhancement in the experimentally observed reactivity under MW irradiation. In concert with DFT computed energetics, control experiments showed that the reaction does not proceed in BMIM-IL alone without tropylium.

Experimental Section

The reagents and solvents employed were high purity commercial samples (Fischer, Merck and Sigma-Aldrich), which unless otherwise stated were used as received. Reactions were carried out in ovendried RB flasks. Thin-layer chromatography (TLC) was performed on Merck silica gel 60F254 (0.25 mm thickness) plates detected by UV light (254 nm) and iodine vapors. Purification of the crude products was carried out by flash column chromatography using silica gel (100-200 mesh). Melting points were determined on electro thermal apparatus and are uncorrected. Microwave (MW) assisted reactions were carried out in a Biotage Microwave reactor. The IR spectra were recorded on a Nicolet-Impact-410 FT-IR spectrometer. NMR spectra (1H/13C) were recorded on DELTA2 400 MHz and Bruker DRX 400 MHz spectrometers using CDCl₃ and calibrated using internal standard (1HNMR at 400 MHz and fully decoupled 13 CNMR at 100 MHz with δ values reported in ppm). GC-MS analyses were performed on a Shimadzu 2010 series mass selective detector instrument. Elemental analysis was carried out by using Heraus CHN rapid analyser.

23, 5. Downloaded from https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202202791 by Librarian In-Charge, Wiley Online Library on [05/12/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

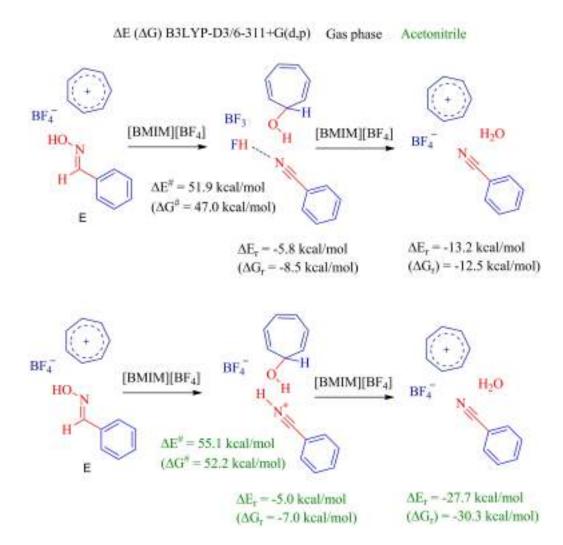


Figure 5. Dehydration reaction of (E)-benzaldoxime in presence of [BMIM][BF $_4$] (gas phase values in black, results in MeCN in green).

ΔE (ΔG) B3LYP-D3/6-311+G(d,p) Gas phase

$$BF_4$$
 H_3C^{-N} N_{-n-Bu} BF_3 H_3C^{-N} N_{-n-Bu} $N_$

Figure 6. Formation of nitrile from (E)-benzaldoxime in presence of [BMIM][BF₄].

General procedure for the synthesis of aldoximes (for a slightly different procedure see Ref. 9). The selected aldehyde (87 mmol) was dissolved in water (45 mL) at 40 °C. A solution of the corresponding hydroxylamine hydrochloride (90 mmol) and sodium

acetate (87 mmol) in water (25 mL) was added, and the reaction mixture was stirred at about $80\,^{\circ}\text{C}$ under nitrogen for 2 h. The mixture was cooled and extracted with diethyl ether, the organic

Chemistry Europe

European Chemical Societies Publishing

phase was washed with brine, dried over Na₂SO₄, filtered, and the filtrate was evaporated to dryness in vacuum.

General procedure for the synthesis of nitriles from aldoximes: An oven dried 25 mL RB flask equipped with magnetic stir bar was charged with [BMIM][BF₄] (3–4 mL), Aldoxime (1 mmol), tropylium tetrafluoroborate (10 mol%), and the resulting mixture was irradiated in the microwave reactor at 90 °C for a specified time, while monitoring the progress of the reaction by TLC. Upon completion, the reaction mixture was extracted with ether (3 times). The combined organic phase was washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography (100–200 mesh) using n-hexane and ethyl acetate (95:05).

General procedure for recycling and re-use of [BMIM][BF₄]: The brown-colored IL after each run was dried overnight under vacuum at 60 °C and reused directly in subsequent runs (up to 4 cycles), after which it was set aside for recovery as follows: the combined brown-colored IL recovered from several experiments were dissolved in dry acetonitrile and filtered through celite to remove insoluble brown particles. After removal of solvent from filtrate, the recycled IL was dried overnight under vacuum at 60 °C and reused in subsequent runs.

Computational Procedures

Density functional thery (DFT) calculations at the B3LYP^[20]-D3^[21]/6-311+G(d,p) level were performed with the Gaussian 16 package of programs. ^[22] Harmonic vibrational frequency computations were carried out at the same level of theory in order to characterize the optimized stationary point as minima (no imaginary frequencies) or transition states (TSs, one imaginary frequency). Intrinsic reaction coordinate (IRC)^[23] calculations were performed to confirm that the located TSs connected the correct reactants and products. Solvation effects were taken into account by geometry optimizations with the polarized continuum model using the integral equation formalism variant (IEFPCM). ^[24]

Supporting Information Summary

Analytical and spectral data as well as Table S1 (solubility) and Figure S1 (recycling), are gathered in the supporting information file.

Acknowledgements

The authors at Karnatak Science College, Dharwad thank the University Sophisticated Instrument Center and DST-SAIF KUD for IR and NMR. A. Anchi is grateful to Government of Karnataka for BCWD, Vidyasiri fellowship. Financial assistance from KUD Project No.KU/PMEB/2020-21/69 is also gratefully acknowledged. GLB acknowledges financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (Secyt-UNC). Access to computational resources from CCAD-UNC and CCT-Rosario Computational Center, members of SNCAD-MinCyT, Argentina, is gratefully acknowledged.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary information material of this article.

Keywords: Aldoxime to Nitrile · DFT Computations · Ionic Liquids · Organocatalyst · Tropylium

- a) M. North in Comprehensive Organic Functional Group Transformations,
 Vol. 3 (Eds.: A. R. Katritzky, O. Meth-Cohn, C. W. Rees, G. Pattenden),
 Pergamon, Oxford, 1995; b) K. Friedrich, K. Wallenfels in The Chemistry of the Cyano Group (Ed.: Z. Rappaport) Wiley-Interscience, New York, 1970;
 c) J. S. Miller, J. L. Manson, Acc. Chem. Res. 2001, 34, 563; d) R. C. Larock,
 Comprehensive Organic Transformations, 2nd ed., Wiley, New York, 1999;
 e) A. J. Fatiadi, in Preparation and Synthetic Applications of Cyano Compounds (Eds.: S. Patai, Z. Rappaport), Wiley-VCH, New York, 1983;
 f) G. P. Ellis, T. M. Romney-Alexander, Chem. Rev. 1987, 87, 779;
 g) R. Raja, R. D. Adams, D. A. Blom, W. C. Pearl, E. Gianotti, J. M. Thomas,
 Langmuir 2009, 25, 7200.
- [2] S.-I. Murahashi, Science of Synthesis, Vol. 19, Thieme-Verlag, Stuttgart, 2004.
- [3] G. Yan, Y. Zhang, J. Wang, Adv. Synth. Catal. 2017, 359, 4068-4105.
- [4] Y. Xia, H. Jiang, W. Wu, Eur. J. Org. Chem. 2021, 48, 6658-6669.
- [5] R. M. Rodrigues, D. A. Thadathil, K. Ponmudi, A. George, A. Varghese, ChemistrySelect 2022, 7, e202200081.
- [6] T. F. Mabasa, J. Mabasa, M. Simelane, B. Vatsha, B. C. E. Makhubela, H. H. Kinfe, Synlett 2020, 31, 991–996.
- [7] N. Uludag, Russ. J. Org. Chem. 2020, 56, 1640-1645.
- [8] X. Ma, D. Liu, Z. Chen, Synth. Commun. 2021, 51, 3261-3266.
- [9] Y. Zhao, G. Mei, H. Wang, G. Zhang, C. Ding, Synlett 2019, 30, 1484– 1488.
- [10] W. Zhang, J.-H. Lin, P. Zhang, J.-H. Xiao, Chem. Commun. 2020, 56, 6221–6224
- [11] R. G. Kalkhambkar, S. D. Bunge, K. K. Laali, Tetrahedron Lett. 2011, 52, 5184–5187.
- [12] A. Hinzmann, T. Betke, Y. Asano, H. Groeger, Chem. Eur. J. 2021, 27, 5313–5321.
- [13] P. Dominguez de Maria, *Molecules* **2021**, *26*, 4466.
- [14] J. Xu, Y. Gao, Z. Li, J. Liu, T. Guo, L. Zhang, H. Wang, Z. Zhang, K. Guo, Eur. J. Org. Chem. 2020, 3, 311–315.
- [15] G. Aridoss, K. K. Laali in Green Chemistry: An inclusive Approach (Ed.: B. Torok, T. Dransfield), Elsevier, 2017, 555–608.
- [16] a) K. K. Laali, Arkivoc 2016, (i) 150–171; b) K. K. Laali, R. G. Kalkhambkar, S. M. Sutar, Synlett 2021, 32, 617–636; c) G. Aridoss, K. K. Laali, Eur. J. Org. Chem. 2011, 15, 2827–2835; d) R. G. Kalkhambkar, S. N. Waters, K. K. Laali, Tetrahedron Lett. 2011, 52, 867–871.
- [17] G. A. Olah, K. K. Laali, Q. Wang, G. K. S. Prakash, *Onium Ions*, Wiley, New York, 1998.
- [18] a) N. N. H. Ton, B. K. Mai, T. V. Nguyen, J. Org. Chem. 2021, 86, 9117–9133; b) S. H. Doan, M. A. Hussein, T. V. Nguyen, Chem. Commun. 2021, 57, 8901–8904.
- [19] a) P. K. Ranga, F. Ahmad, P. Nager, P. S. Rana, R. V. Anand, J. Org. Chem. 2021, 86, 4994–5010; b) V. R. Naidu, S. Ni, J. Franzen, ChemCatChem 2015, 7, 1896–1905.
- [20] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- [21] S. Grimme, J. Antony, S. Ehrlich, H. J. Krieg, Chem. Phys. 2010, 132, 154104.
- [22] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F.

23. S. Downloaded from https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202202791 by Librarian In-Charge, Wiley Online Library on [05/12/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16, Revision C.01*, Gaussian, Inc., Wallingford CT, **2016**.

- [23] a) K. Fukui, Acc. Chem. Res. 1981, 14, 363–368; b) H. P. Hratchian, H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First 40 Years (Eds.: C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria), Elsevier, Amsterdam, 2005, 195–249.
- [24] J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct. 1999, 464, 211–226.

Submitted: July 28, 2022 Accepted: August 29, 2022

साहित्य, कला आणि लोकसंस्कृतीला वाहिलेले त्रैमासिक

तिफण

वर्ष १३ वे, अंक - पहिला; एप्रिल-मे-जून २०२२

UGC Care Listed Journal ISSN 2231 - 573X

संपादक ●
 डॉ. शिवाजी हुसे

पत्ता : संपादक, तिफण, 'शिवार', श्रीराम कॉलनी, हिवरखेडा रोड, कन्नड, जि. औरंगाबाद – ४३११०३, मो. ९९०४००३९९८

अनक्रमणिका

ग्राप्त. ाली गती ची ाती जी

ाज चि

ल चे

त्री

न f नी R मे

t, 才

अ. क्र.	लेखाचे शीर्षंक / लेखकाचे नाव	पृ. क्र.
٧.	छत्रपती शिवराय : एक अद्वितीय व्यक्तिमन्त्र (व्यक्तित्व विकास व राष्ट्र उभारणीसाठी शिवचरित्र हा एक उत्तम पर्याय) - प्रा. नंदू बाळुबा गवळी	8 - 3
٦.	छत्रपती शिवाजी महाराजांची महसूल व्यवस्था - प्रा, डॉ. चिताडे एन. पी.	४ - ६
₹.	छत्रपती शिवाजी महाराज : साहित्यातील प्रतिमा आणि इतिहास - प्रा. डॉ. गणेश मालटे	b - 9
٧.	डॉ. बाबासाहेब आंबेडकरप्रणीत छत्रपती शिवाजी महाराजांच्या इतिहासाची मीमांसा - प्रा. प्रफुल्ल एम. राजुरवाडे	१० - १२
٧.	छत्रपती शिवाजी महाराज - कर्तृत्व - शैलेश सुरेंद्र सोनोने	63 - 60
۹.	छत्रपती शिवाजी महाराजांची व्यवस्थापनशास्त्रविषयक भूमिका - प्रा. अविनाश अशोक सोनवणे	\$6 - 50
७.	छत्रपती शिवाजी महाराजांची प्रशासनविषयक भूमिका - प्रा. डॉ. केशव तिढके	२१ - २३
٤.	छत्रपती शिवाजी महाराजांचे न्यायक्षेत्रातील योगदान - प्रा. डॉ. प्रकाश निवृत्ती चौधरी	28 - 50
٧	छत्रपती शिवाजी महाराजांची धार्मिक सहिष्णुता - डॉ. सुधाकर वि. भुयार	२८ - ३०
₹0.	छत्रपती शिवाजी महाराजांचे धार्मिक, आर्थिक व व्यापारविषयक धोरण - प्रा. डॉ. प्रियंका खोसे	36 - 38
११.	छत्रपती शिवाजी महाराज : व्यक्तित्व आणि कर्तृत्व - डॉ. व्योती आर तहाणे	३५ - ३७
₹ ₹.	छत्रपती शिवाजी महाराजांची धार्मिक सहिष्णूता - डॉ. गीतांजली मोटे	38 - 88
83.	छत्रपती शिवाजी महाराजांचे आदर्श व्यापारी धोरण	85 - 88
	- डॉ. मधूकर विठोब्ग जाधव	
१४.	छत्रपती शिवाजी महाराजांची व्यवस्थापनविषयक भूमिका व निर्णय - डॉ. किशोर गिरीश नवले	४७ - ५१
ξ 4.	छत्रपती शिवाजी महाराजांची धार्मिक सहिष्णुता - प्रा. साळवे सचिन	49 - 4

छत्रपती शिवाजी महाराजांचे आदर्श व्यापारी धोरण

- डॉ. मधूकर विठोबा जाधव

यशवंतराव चव्हाण महाविद्यालय, हलकर्णी, ता. चंदगड, जि. कोल्हापूर - ४१६५५२ मो. ९९७५५४६०२०/९३२५५६८२४९, ई-मेल mvjhistory12@ gmail.com

🕻 त्रपती शिवाजी महाराजांचे व्यापारविषयक धोरण आदर्शवत व सर्वश्रेष्ठ आहे. भारतीय समुद्र व्यापाराचे निमति म्हणून छत्रपती शिवाजी महाराजांचा उल्लेख केला जातो. छत्रपतींच्या कालखंडामध्ये भारताला आंतरराष्ट्रीय व्यापारात महत्त्वाचे स्थान प्राप्त झाले. छत्रपतींनी आरमाराची बांघणी करून स्वराज्याच्या सुरक्षितेत वाढ केली. जगाबरोबर सागरी व्यापार करता यावा म्हणून मालवाह् युद्धनीकांची बांधणी केली, त्यातन स्वराज्याच्या व्यापार मस्कतपर्यंत सुरू झाला, छत्रपतींनी लढाऊ जहाजांची निर्मिती करून व्यापार-उद्योगाला पाठबळ दिले. छत्रपती शिवाजी महाराजांचे व्यापार-उद्योगाला चालना देण्याचे एक तत्त्व होते. ते असे की, शेती व उद्योगाप्रमाणेच व्यापार वाढला. तर स्वराज्याच्या विकासाची गती चौपट होईल. पेठेची वसाहत करण्यासाठी सरकारातून सनद दिली जात असे. पेठेच्या विकासाची व संरक्षणाची पूर्ण जवाबदारी सरकारची असे, व्यापाराच्या प्रगतीसाठी छत्रपतींनी अनेक नव्या व्यापारी पेठा निर्माण करून व्यापार-उद्योगाची प्रगती केली.

व्यापारी पेठा -

छत्रपतीपूर्व कालखंडामध्येसुद्धा अशा पेठांमधून मोठ्या प्रमाणात व्यापार-उद्योग चालत असे. औरंगाबाद येथे छत्रपती शिवाजी महाराजांचे पूर्वज मालोजीराजे, परसोजीराजे, विठोजीराजे यांच्या नावे प्रामुख्याने मालपुरा, परसपुरा, खेलपुरा, विठापुरा वा पेठा होत्या व त्यातून मोठ्या प्रमाणात व्यापार चालत असे.' खेड-शिवापूर या ठिकाणी शहाजीराजे यांचे थोरले चिरंजीव संभाजीराजे यांच्या नावे संभापूर-माडकी पेठ वसविली, माता जिजाऊ यांनी खेड-शिवापूर या ठिकाणीच बाल शिवाजीराजे यांच्या नावाने शिवापूर पेठ वसविली व तेथेच बाजारपेठ स्थापली, छत्रपती शिवाजी महाराजांनी पुणे याठिकाणी जिजापूर ही व्यापारी पेठ स्थापन केली, तसेच माता जिजाऊ यांनी किल्ले रायगडाच्या पायथ्याशी शिवापष्टण हे गाव वसविले. छत्रपतींनी व्यापाराला संरक्षण देऊन स्वदेशी व परदेशी व्यापाराला चालना दिली. युरोपियन इंग्रज, डच, फ्रेंच, पोर्तुगीज आदी व्यापारी देशांबरोबर त्यांचे व्यापारी संबंध होते. त्यांनी स्वराज्यात कोणतीही हवळाडवळ करू नये, म्हणून छत्रपतींनी त्यांना कहात ठेवले. अशाप्रकारे स्वराज्यात भक्कम अशी अंतर्गत सुरक्षा ठेवून स्वराज्याची ताकद वाडविली.

मागणी तसा पुरवठा -

छत्रपतींच्या स्वराज्यात अर्थसंकल्प होता. आर्थिक
सुरक्षितता व सुबन्धा स्वराज्याच्या दृष्टीने महत्त्वाची होती.
स्वराज्यामध्ये अंदाजपत्रकाप्रमाणे खर्च करण्याची व्यवस्था
होती. मागणी तसा पुरवठा या नीतीप्रमाणे स्वराज्यातील
मालाची खरेदी-विक्री होत असे. ज्या वस्तू जेथे तथार होत
नाहीत त्याठिकाणी त्यांची विक्री करावी, असा दंडक होता.
व्यापाराला चालना देण्यात आली. व्यापारवाढीसाठी काही
सवलतीही देण्यात आल्या.' छत्रपतींनी विविध उद्योगव्यवसायांना संरक्षण देऊन व्यापारात भरभराट आणली. या
क्षेत्रातील कायदेकानून आणि नियम बनविण्यात आले, आयात
आणि निर्यात यावरील जकातींचे दर ठरविण्यात आले
व्यापान्यांच्या हितासाठी व त्यांनी स्थायिक होण्यासाठी त्यांना
स्वराज्यातून सर्वतोपरी मदत देण्यात आली.'
परराष्ट्रीय व्यापार -

रामचंद्रपंत अमात्यांच्या आज्ञापत्रामध्ये छत्र^{पती}

तिफण ; कुळवाडीभूषण छत्रपती शिवाजी महाराज विशेषांक

Journal Details

Journal Title (in English Language)

Tifan (print only) | (Current Table of Contest)

Journal Title (in Regional Language)

शिफण (print only)

Publication Language

Publisher

Shivaji Huse

ISSN

2231-573X

E-ISSN

NA

Discipline

Arts and Humanities

Subject

Arts and Humanities (all)

Focus Subject

Language and Linguistics, Literature and Literary Theory

UGC-CARE coverage years

from June-2019 to Present

Second sighting record of King Cobra in Kolhapur Western Ghats, India

The second sighting record of King Cobra in Kolhapur, Maharastra, Western Ghats, India.

King Cobra *Ophiophagus hannah* is the longest venomous snake that measures up to 5.5 m (18 ft) in length (Wallach et al. 2014). This rare species belongs to the 'Vulnerable' category of the IUCN (Stuart et al. 2012). It is widely distributed in southern and southeastern Asia up to 2,000 m (Stuart et al. 2012). King Cobra inhabits a variety of habitats from degraded forests, mangrove swamps, agricultural fields, plantations, grasslands, wetlands, dense forests, primary

forests, and secondary forests nearby human habitats and streams (Daniel 2002; Stuart et al. 2012; Whitaker & Captain 2015). In the Indian subcontinent it occurs in dense forest and hilly areas of tea/coffee estates in the Western Ghats of southern India, the Himalayan slopes, parts of central and northeastern India, and the Andaman Islands (Sangha et al. 2011; Murthy & Murthy 2012; Chandra et al. 2014).

SARN

In the Western Ghats, King Cobra is reported up to Goa from Tamil Nadu, Kerala, and Karnataka (Whitaker & Captain 2015). Off late, many studies have been done on King Cobras in the Western Ghats (Bhaisare et al. 2010; Barve et al. 2013; Gowrishankar et al. 2013; Rao et al. 2013); yet, until recently, its presence in Maharashtra state was unknown. Yadav & Yankanchi (2015) reported it from Tillari forest in Kolhapur of southern Maharashtra. In this note, we report another sighting record of King Cobra from a nearby locality in Maharashtra.

We were visiting Kalanadigad (15.856 N 74.252 E; 316 m) in Chandgad taluk of Kolhapur district for bird watching field trip on 01 January 2020. The second author, SMH, sighted a King Cobra (Video 1) around 1520 h in dry grass. The snake was there for about five minutes before it slithered off into the nearby forest. It was a large, adult snake. The snake was confirmed as a King Cobra by referring the descriptions given in books by Daniel (2002) and Whitaker & Captain (2015). The present sighting record of King Cobra in Kalanadigad is located around 15 km east from Tillari Village.

References

Barve, S., D. Bhaisare, A. Giri, P. Gowrishankar, R. Whitaker & M. Goode (2013). A preliminary study on translocation of "rescued" King Cobras *Ophiophagus hannah*. *Hamadryad* 36(6): 80–86.

Bhaisare, D., V. Ramanuj, P. Gowrishankar, M. Vittala, M. Goode & R. Whitaker (2010). Observations on a Wild King Cobra (*Ophiophagus hannah*), with Emphasis on Foraging and Diet. *IRCF Reptiles & Amphibians* 17(2): 95–102.

Chandra, K., A. Raha, A. Parida, A. Majumder, P. Dawn & V. Singh (2014). The first record of the King Cobra Ophiophagus hannah (Cantor, 1836) (Reptilia: Elapidae) from Chhattisgarh, central India. Records of the Zoological Survey of India 114(3): 519–521.

Daniel, J.C. (2002). The Book of Indian Reptiles and Amphibians. Bombay Natural History Society / Oxford University Press, Mumbai, 141–143pp.

Gowrishankar, P., S.R. Ganesh, R. Whitaker & P. Prashanth (2013). King Cobra *Ophiophagus hannah* (Cantor, 1836) encounters in human-modified rainforests of the Western Ghats, India. *Hamadryad* 36(2): 62–68.

Murthy, K.L.N. & K.V.R. Murthy (2012). Sightings of King Cobra *Ophiophagus hannah* in northern coastal Andhra Pradesh. *Reptile Rap* 14: 29–32.

Rao, C., G. Talukdar, B.C. Choudhury, P. Gowrishankar,

R. Whitaker & M. Goode (2013). Habitat use of King Cobra *Ophiophagus hannah* in a heterogeneous landscape matrix in the tropical forests of the Western Ghats, India. *Hamadryad* 36(2): 69–79.

Sangha, H.S., R. Naoroji & M. Sharma (2011). Sighting of King Cobra *Ophiophagus hannah* in Arunachal Pradesh, India: a new altitude record for northeastern India. *Reptile Rap* 11: 19–20.

Stuart, B., G. Wogan, L. Grismer, M. Auliya, R.F. Inger, R. Lilley, T. Chan-Ard, N. Thy, T.Q. Nguyen, C. Srinivasulu & D. Jelić (2012). *Ophiophagus hannah*. The IUCN Red List of Threatened Species 2012: e.T177540A1491874. Downloaded on 18 February 2020. https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T177540A1491874.en.

Wallach, V., K.L. Williams & J. Boundy (2014). Snakes of the World: A Catalogue of Living and Extinct Species. CRC Press, Boca Raton.

Whitaker R. & A. Captain (2015). Snakes of India The Field Guide. Draco Books, Chengalpattu.

Yadav, O. & S. Yankanchi (2015). Occurence of Ophiophagus hannah Cantor, 1836 (Squamata, Elapidae) in Tillari, Maharashtra, India. Herpetology Notes 8: 493–494.

N.C. Hiragond¹ & S.M. Awadan²

^{1,2} Department of Zoology, Yashwantrao Chavan College Halkarni, Chandgad Taluk, Kolhapur, Maharashtra 416552, India.

¹hiragond@gmail.com (corresponding author)

Citation: Hiragond, N.C. & S.M. Awadan (2022). Second sighting record of King Cobra in Kolhapur Western Ghats, India. Reptile Rap #220, In: *Zoo's Print* 37(5): 05–06.

ELSEVIER

Contents lists available at ScienceDirect

Journal of Molecular Graphics and Modelling

journal homepage: www.elsevier.com/locate/jmgm

Solute-solvent interaction and DFT studies on bromonaphthofuran 1,3,4-oxadiazole fluorophores for optoelectronic applications

Lohit Naik., M.S. Thippeswamy, V. Praveenkumar, G.H. Malimath, D. Ramesh, Suraj Sutar, Hemantkumar M. Savanur, S.B. Gudennavar, S.G. Bubbly

- Department of Physics and Electronics, CHRIST (Deemed to be University), Bengalore Central Campus, Bengaloru-560029, Kernutoisia, India
- ^b UG and PG Department of Physics, Karnatok Science College, Dharwod, 580001. Kernatoka, India
- Government First Grade College, Shiramoggu, 577201, Karnataka, India
- ⁴ Yeshwantrao Chavan Mehanidyeleya, Halkemi, Kolhepur, 416552, Mahanahtra, Indie
- * Post Graduate Department of Studies and Research in Chemiutry, P. G. Jubin Science Codege, Hubballi, 580021, Kornetaks, India

ARTICLEINFO

Reywords 1,3,4-Oxodiszoles Soluse solvent internetions Dipole moments Electrostatic potential Chemical reactivity parameters

ABSTRACT

In the present work, computational and experimental studies were carried out to explore the photophysical properties of bromonaphthofuran substituted 1,3.4-oxadiazole derivatives for optoelectronic applications. Density functional theory (DFT) was used to demonstrate the electronic and optical properties of the synthesised molecules. The theoretical ground state dipole moments of the fluorophores in gas and solvent environments were also computed using Gaussian 09W software. Further, the HOMO-LUMO energies of the fluorophores determined using DFT agree well with the experimental values. Molecular electrostatic potential 3D plots were used to identify the sites which are electrophilic and medeophilic in nature. Dipole moment of both the fluorophores in ground and excited states were determined experimentally. The excited state dipole moments being higher than that of the ground state shows the redistribution of electron densities in the excited state than in the ground state in both the fluorophores. The solute solvent interactions, both specific and non-specific, were assessed using Catalan parameters. Further, the nature of chemical reactivity was determined based on global descriptors. The photophysical properties of the fluorophores studied suggest their potential use as promising candidates for organic light emitting diode (OLED), solar cell and chemosensor applications.

1. Introduction

The last few decades have seen a surge in interest on organic semiconductors, due to their peculiar properties like mechanical flexibility, tailorable optoelectronic properties, facile room temperature synthesis procedures and biocompatibility, which find applications in organic light emitting diodes, thin film transistors, solar cells, sensors, epidermal pulse oximeters and many more [1]. Dedicated research focused on materials for these applications has gained momentum ever since small organic molecules were introduced in electroluminescent diode by Tang and Van Slyke in 1987 [2]. Small molecule organic semiconductors are attractive as they have simple purification protocols, and can form ordered timeable structures that have high charge carrier mobilities. Molecules like phosphine oxide, quinoxaline, phenanthroline, benzimidazole, triazine and oxadiazole have been employed as electron transport materials for organic light emitting diodes (OLEDs) [3]. The widely investigated exadiazoles, in particular, 1,3,4-exadiazoles are also well known for their versatile chemical and biological activities [4-7]. Considered as a biologotere of amide and ester functional groups, many of its pharmacological activities have gained from its ability to form hydrogen bonds with various receptors [7]. Recently, there has been significant shift in the focus from biological activities to the semiconducting properties of these molecules.

The electron deficient nature of 1,3,4-oxadiazole core, good thermal stability, favourable HOMO/LUMO levels, wide band gap, and high electron mobility in derivatives augment their use in electroluminescent and electrophosphorescent devices [8–10]. The 1,3,4-oxadiazole ring having a delocalized 6π electron ring system often behaves as a conjugated diene, a 4π electron component [11]. 1,3,4-oxadiazoles are widely explored as building blocks for organic or polymeric semiconductor materials because of their attractive electron injection and electron transporting properties [12–15]. Strategic tailoring of donor and

E-mail address: bubbly sgill-christiniversity.in (S.G. Bubbbly).

^{*} Corresponding author.

Scheme 1. Synthesis of brumunaphtho substituted 1,3,4-oxadizoles derivatives.

Fig. 1. Molecular structures of 2BMO and 5BFO.

acceptor moieties on the 1,3,4-oxadiazole facilitates the tuning of electronic properties thereby influencing their emission energies and making them prospective candidates for optoelectronic device applications [16]. For instance, the 2,5-disubstituted 1,3,4-oxadiazoles having enhanced optical and electronic properties have been explored as electron transporting molecules in the fabrication of OLEDs [17]. Besides the above, 1,3,4-oxadiazoles have also been tested as fluorescent sensors [18–22].

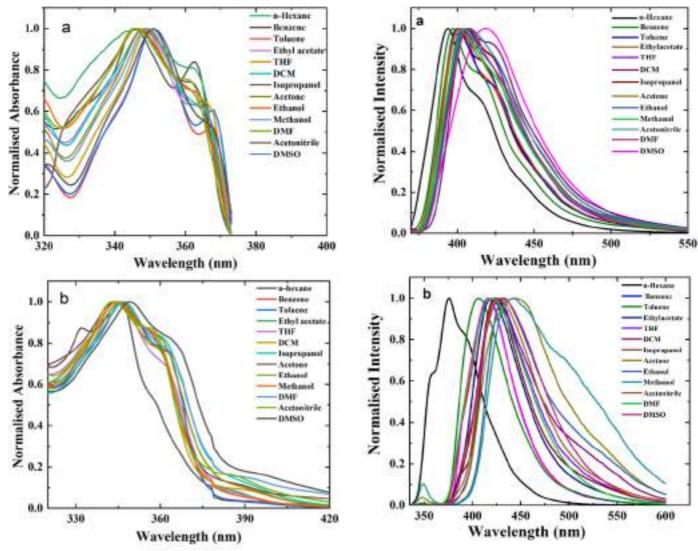


Fig. 2. Normalised absorption spectra of (a) 2BMO and (b) 5BFO.

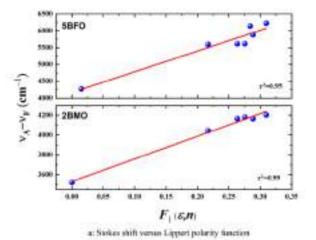
With the focus on exploring 1,3,4-oxadiazole based novel organic and hybrid functional materials, having large Stokes shift, high quantum

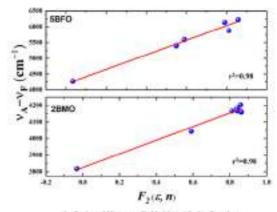
yield, fast photo-response and good photostability which can be useful in OLEDs and detection of chemical species, we investigated two unsymmetric heterocyclic compounds having bromonaphthofuran moieties appended to 1,3,4-axadiazole. The naphthofuran moiety is part of some of the biologically important natural products and its derivatives are also well known for various biological activities [23]. There are a few reports on naphthofuran derivatives as fluorescent labels and recently, fluorescent probes for cell imaging based on bis(naphthofuran) luminogen have been reported [24-26]. Conjugated molecules with 1,3, 4-oxadiazole and naphthene units have been studied for solar cell and optical device applications [27-29]. Here we report the photophysical properties of 2-(5-bromonaphtho{2,1-b}furan-2-yl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole (2BMO) and 5-(5-bromonaphtho[2,1-b]furan-2-yl)-N-(4-fluorophenyl)-1,3,4-oxadiazol-2-amine (5BFO). Detailed photophysical characterization of the molecules can give insights into applications of these molecules as functional materials. Photophysical properties are influenced by the environmental conditions like pH, solvent polarity, nature of substituents and rigidity of the molecules. Here, we resort to solvatochromic approaches to investigate the photophysical

properties of 2BMO and 5BFO. We have investigated the Stokes shift, ground and excited state dipole moment and energy gap of the two

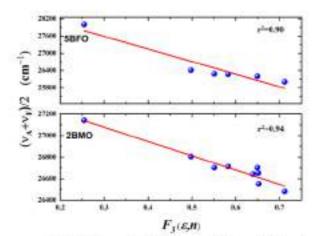
fluorophores experimentally as well as theoretically.

Fig. 3. Normalised fluorescence spectra of (a) 2BMO and (b) 5BPO.


2. Materials and methods


2.1. Synthesis of bromonophthofuran 1,3,4-oxodiazole derivatives

The synthetic route followed for the synthesis of bromonaphthofuran 1,3,4-Oxadiazole derivatives is shown in Scheme 1 and the molecular structures of 2BMO and 5BFO are shown in Fig. 1. The synthesis procedure and structural characterization data for 2BMO and 5BFO are provided in supplementary file.


2.2. Materials and characterization

Spectroscopic grade solvents used in the present study were procured from S. D. Fine Chem Ltd., India. Spectroscopic studies on the fluorophores were carried out maintaining the concentration of fluorescent probes at 10⁻⁵ M. Absorption and fluorescence spectra of the fluorophores were recorded using Carry-300 UV–Vis spectrophotometer and Hitachi F-7000 fluorescence spectrophotometers, respectively. Electrochemical properties of 2BMO and 5BFO were measured using cyclic voltammetry. All the solvatochromic data were analysed using Origin 8.5 software. Theoretical computations were carried out using Gaussian 09W program.

b: Stokes shift verus Bakhshiev polarity function

c: $(\overline{\nu}_A + \overline{\nu}_F)/Z$ versus Kawski-Chamma-Viallet polarity function

Fig. 4. aStokes shift versus Lippert polarity function Fig. 4b: Stokes shift versus Bakhshlev polarity function

Fig. 4c: $(\bar{\nu}_A + \bar{\nu}_F)/2$ versus Kawski-Chamma-Viallet polarity function.

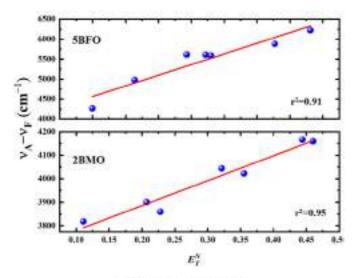


Fig. 5. Stokes shift versus E_7^{W}

2.3. Calculation of dipole moments

Solvent dielectric properties influence the spectral band shift between absorption and emission spectra of solute/fluorophore. Solvatochromism of fluorophores are generally analysed using linear correlations suggested by various researchers: Lippert-Mataga [30,31], Bakhshiev [32], Kawski-Chamma-Viallet [33] and Reichardt [34]. According to Lippert-Mataga, Stokes shift $(\Delta \bar{\nu} = \bar{\nu}_A - \bar{\nu}_F)$ of solute molecule is related to the permittivity (ε) and refractive index (n) of solvent as,

$$\tilde{\nu}_A - \tilde{\nu}_F = m_I F_1(\varepsilon, n) + \text{constant}$$
 (1)

where, \mathbb{F}_A and \mathbb{F}_T are the absorption and fluorescence emission maxima wave numbers (cm⁻¹), $F_1(r,n)$ is the Lippert solvent polarity function (Eq. (2)),

$$F_1(e,n) = \frac{e-1}{2e+1} - \frac{n^2-1}{2n^2+1}$$
(2)

where, e is the dielectric constant and n is the refractive index of the solvent.

 $m_1 = 2(\mu_e - \mu_g)^2/\hbar c a^3$, μ_e and μ_g are the dipole moments of ground and excited state of solute molecule, respectively, \hbar is the Planck's constant, c is the speed of light and a is the Onseger cavity radius of

Table 1
Solvent and fluocophore property correlation parameters.

Flamophere	Correlation	Slope (cm ⁻³)	Intercept (cm ⁻¹)	Correlation coefficient (r ²)	No. of data points
2880	Lippert- Mataga correlation	2296	3550	0.99	0
	Bakhshiev correlation	410	3825	0.98	6
	Knwski- Chamera- Viallet correlation	-1326	27476	0.94	7
	Reichacett correlation	1061	3673	0.95	0
5BEO	Lippen- Mataga correlation	6365	4164	0.95	6
	Bakhahise correlation	2310	4187	0.98	6
	Knwski- Chamma- Viallet correlation	-4159	28505	0.90	10
	Reichards correlation	2674	4294	0.91	

solute molecule that can be calculated using Eq. (3) [35].

$$a = \left(\frac{3M}{4\pi8N_d}\right)^{1/3}$$
(3)

where, M, δ and N_A are the molecular weight, density and Avogadro number, respectively.

Bakhshiev [32] equation (Eq. (4)) gives the dependency of the Stokes shift of solute on e and n of solvent as.

$$\overline{\nu}_A - \overline{\nu}_F = m_2 F_2(\varepsilon, n) + \text{constant}$$
 (4)

where, $\bar{\nu}_A$ and $\bar{\nu}_F$ are the absorption and fluorescence emission maxima wave numbers (cm⁻¹), $m_2 = 2(\mu_e - \mu_g)^2/hca^2$ and $F_2(\nu, n)$ is the Bakhshiev solvent polarity function (Eq. (5)),

$$F_2(\epsilon, n) = \frac{2n^2 + 1}{n^2 + 2} \left(\frac{\epsilon - 1}{\epsilon + 2} - \frac{n^2 - 1}{n^2 + 2} \right)$$
(5)

and all other symbols have their usual meanings.

Kawski-Chamma-Viallet [33] equation relates the average of absorption and emission maximum of solute with e and n of solvent as,

$$\frac{\overline{\nu}_A + \overline{\nu}_F}{2} = -m_3 F_3(\varepsilon, n) + \text{constant}$$
(6)

where, $m_3 = \frac{2(q_1^2 - q_2^2)}{\log^2}$, $F_3(v, n)$ is the Kawski-Chamma-Viallet solvent polarity function as given in Eq. (7),

$$F_3(\varepsilon, n) = \frac{2n^2 + 1}{2(n^2 + 2)} \left(\frac{\varepsilon - 1}{\varepsilon + 2} - \frac{n^2 - 1}{n^2 + 2} \right) + \frac{3(n^4 - 1)}{2(n^2 + 2)^2}$$
 (7)

and all other symbols have their usual meanings.

Assuming a stable symmetry of molecule upon excitation and par-

allel orientation of the dipole moments, μ_g , μ_e , and μ_e/μ_g can be calculated from the slopes $(m_2$ and $m_3)$ of the plots of $\bar{\nu}_A \sim \bar{\nu}_B$ versus $F_2(e,n)$ and $(\bar{\nu}_A + \bar{\nu}_E)/2$ versus $F_3(e,n)$ as,

$$\mu_{e} = \frac{m_{1} - m_{2}}{2} \left(\frac{hca^{3}}{2m_{2}} \right)^{1/2}$$
(8)

$$\mu_e = \frac{m_2 + m_2}{2} \left(\frac{hca^3}{2m_2} \right)^{1/2}$$
(9)

$$\frac{\rho_c}{\mu_-} = \frac{m_2 + m_3}{m_1 - m_2} \text{ for } m_3 > m_2$$
(10)

If μ_x and μ_z subtend an angle φ ,

$$cas \varphi = \frac{1}{2\mu_e \mu_e} \left[\left(\mu_e^2 + \mu_e^2 \right) - \frac{m_2}{m_3} \left(\mu_e^2 - \mu_g^2 \right) \right] \qquad (11)$$

 μ_e can also be determined using the empirical relation [34,35],

$$\bar{\nu}_A - \bar{\nu}_F = 11307.6 \left(\frac{\Delta p}{\Delta \mu_B}\right)^2 \left(\frac{a_B}{a}\right)^2 E_T^N + communt$$
 (12)

where, (E_T^N) is the microscopic solvent polarity function, $\Delta \mu$ and $\Delta \mu_B$ are the changes in the dipole moments of sample and reference (Betaine dye) molecules on excitation, a_B is the Onsager cavity radius of reference molecule. $\Delta \mu$ can be determined using the slope of $\bar{\nu}_A - \bar{\nu}_F$ versus E_T^N plot and the reported values of $\Delta \mu_B$ and a_B (9 D and 6.2 Å, respectively) for Betaine dye [36]. Further, using $\Delta \mu$ and μ_g from Eq. (8), μ_s can be determined. Eq. (12), which accounts for more intermolecular interactions, better correlates the Stokes shift and solvent polarity function than the other relations.

Though Lippert-Mataga relation shows the solvent polarity effect on observed Stokes shift, a more precise correlation on solvent parameters affecting spectral shift was given by the multilinear approach proposed by Kamlet-Abbond-Taft [37] and Catalan [38]. Catalan equation accounts for solvent polarizability and solvent dipolarity parameters separately in addition to solvent acidity and basicity parameters proposed by Kamlet-Abbond-Taft. ΔV can be correlated with solvent properties like polarizability (SP), dipolarity (SdP), acidity (SA) and basicity (SB) using Catalan equation (Eq. (13)) [38].

$$y = y_b + a_{SP}SP + h_{SSP}SdP + c_{SA}SA + d_{SD}SB$$
 (13)

where, y and y_0 denote $\Delta \bar{y}$ in solvent and gaseous phase (when solvent parameters are set to zero), respectively, a_{SP} , b_{SdP} , c_{SA} and d_{SB} are the regression coefficients that describe the sensitivity of y to the different solute-solvent interaction mechanisms.

Fluorescence quantum yield is experimentally determined using Eq.

Table 3 μ_x/μ_y , φ and $\Delta \mu$ of 2BMO and 5BFO.

Fluorophore	Pr.	W.	Δψ (D)	
	**	(2)	Solvatochronic method	Solvent polarity parameter
2BM0	1.848	0	1.772	1.136
SBFO	3.449	0	4.086	2.771

Table 2 Dipole moments of 2BMO and 5BPO.

Fluorophore	4 (Å)	$n_x(0)$	μ_{e} (D)				
			Lippert (Eq. (3.3)	Bukhahiev (Eq. (4))	Kareski-Charama-Viullet (Eq. (6)).	Solvatochromic method (Eq. (9))	Solvent polarity parameter (Eq. (12))
2BMO	4.212	1.990	6,109	3.715	3.719	3.715	3.035
5BPO	4.175	1.635	8.311	5.722	5.722	5.772	4.407

a; Resonance structures of 2BMO

b: Resonance structures of 5BFO

Fig. 6. aResonance structures of 2BMO Fig. 6h: Resonance structures of 5BFO.

Table 4 Coefficients in Catalan equation.

Eluorophore	74	Rep	N _{Set}	Car	d_{MC}	R^2
2BMO	1879	2144	628	552	: 264	0.896
5850	1603	2109	3101	439	482	0.902

(14) [39].

$$\Phi_{S} = \Phi_{H} \frac{I_{s} \times OD_{N} \times n_{s}^{2}}{I_{h} \times OD_{N} \times n_{s}^{2}}$$
(14)

where, Φ_1 , I_1 , OD_1 and n_l (l = S, R) represent the quantum yield, integrated fluorescence peak area, optical density and refractive index. The subscript s and u represent the sample and reference, respectively.

3. Results and discussion

3.1. Spectral studies

Absorption and fluorescence spectra (Figs. 2 and 3) of 2BMO and 5BFO were recorded in thirteen solvents with varying ϵ and n to study the change in dipole moments of the fluorophores due to effect of solvent environment, electronic transition etc. Spectral data like absorption maximum (\mathcal{I}_A) , fluorescence emission maximum (\mathcal{I}_F) and Stokes shift (ΔV) obtained are given in Supplementary Tables 51 and 52. The maximum shifts (Δi_A) in absorption maxima for 2BMO and 5BFO in different solvents (n-Hexane to DMSO) are 812 cm⁻¹ (28902-28090 ${\rm cm}^{-1}$) and 759 ${\rm cm}^{-1}$ (29412 - 28653 ${\rm cm}^{-1}$), respectively, whereas the emission maxima shifts $(\Delta \lambda_{\theta})$ are observed to be 1458 cm⁻¹ (25381 — 23923 cm⁻¹) for 2BMO and 3555 cm⁻¹ (26596 - 23041 cm⁻¹) for 5BFO. While both the molecules show very low absorption spectral shift, SBFO fluorophore shows larger fluorescence spectral shifts compared to 2BMO. These results suggest that both the fluorophores are less polar in ground state compared to excited state. The absorption and emission maxima of both the fluorophores exhibit bathochromic shift. The increase in Stokes shift (3521-4166 cm⁻¹ and 2816-5612 cm⁻¹ for 2BMO and 5BFO, respectively) with increase in the solvent polarity may be due to the increased solute-solvent interactions in the excited state affecting the charge distribution in excited state and hence the molecular geometry [39,40]. The pronounced shifts in the emission spectra indicate the increased excited state dipole moment, where the relaxed first singlet excited state will be energetically more stable than ground state. The remarkable spectral band shifts and Stokes shifts indicate intramolecular charge transfer (ICT) due to x→x* transition occurring in the singlet excited state.

3.2. Dipole moments

The singlet excited state dipole moments of 2BMO and 5BFO were determined by correlating their spectroscopic properties with solvent polarity functions. The values of solvent polarity functions were computed using Eqs. (2), (5) and (7) for thirteen solvents using the values of ϵ and n from Parkanyi et al. [41]. The computed values of $F_1(\epsilon,n)$, $F_2(\epsilon,n)$ and $F_3(\epsilon,n)$ along with the values of F_2^{γ} are given in Supplementary Table 53. The solvatochromic plots for 2BMO and 5BFO are presented in Fig. 4a–c and 5 and the slopes, intercepts and correlation coefficients are given in Table 1.

The values of μ_x , μ_g , μ_s/μ_g and $\Delta\mu$ of 2BMO and 5BFO determined using Eqs. 8–12 and the slopes from Fig. 4(n–c) and 5 are given in Tables 2 and 3. A notable difference observed between μ_s and μ_g values (Table 2) for both the fluorophores suggest appreciable charge distribution in singlet excited state following ICT process. Resonance structures of 2BMO and 5BFO molecules (Fig. 6a and b) support this possibility. The higher μ_s value indicates a more polar excited state where molecules are very sensitive to the solvents. The variations in μ_s values obtained from different solvatochromic methods (Table 2) can be attributed to the various assumptions in the methods [42,43].

While Lippert method which does not account for polarizability yields the highest value of μ_c , the solvent polarity parameter method (Eq. (12)) which considers the specific solute-solvent interactions gives the least value [44]. It is also observed that $\Delta \mu$ of 58FO are higher than that of 28MO, which shows that 58FO is more sensitive to solvent

Fig. 7. Optimised ground state molecular structure with dipole moment vector for (a) 28MO and (b) 58FO.

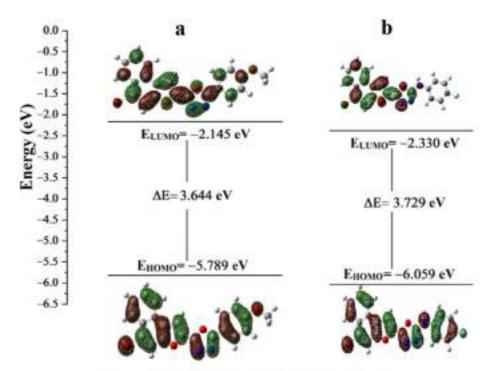


Fig. 8. 3D plots of HOMO and LUMO for (a) 2BMO and (b) 5BFO.

Table 5 Theoretical ground state E_{HOMO} , E_{LOMO} , ΔE , μ_E in gas phase and experimentally estimated optical energy band gap (E_E^{opt}) .

$\mu_{\Gamma}(D)$	$E_{\text{MOMD}}\left(\nu V\right)$	$E_{Lines}(\sigma V) = \Delta E(\sigma V)$		$\mathbb{Z}_d^{\operatorname{opt}}$ (eV)
5,139	-5.789	-2.145	3.644	3.563 (at 346 nm)
6.856	-6.059	2.330	3.729	3.573 (at 347 nm)
	5,139	5.139 -5.789	5,139 -5,789 -2,145	5.139 -5.789 -2.145 3.644

environment. From the angle between dipoles in Table 3, we see that μ_a and μ_g are aligned parallel and the molecular symmetry is unaffected by electronic transition [45].

3.3. Multiple-parametric correlations

The Catalan parameters of different solvents used to determine the Catalan coefficients for 2BMO and 5BFO (Table 4) are given in Table S4. While the solvent parameters SP and SdP describe the non-specific interactions which stabilize the molecular dipole, SA and SB measure the hydrogen bond donor and acceptor capabilities, respectively, in specific interactions. From Table 4 we observe that SP and SdP dominates SA and SB for both the fluorophores. However, the influence of specific interactions between solute and solvents on Stokes shifts cannot be

neglected.

The experimental fluorescence quantum yields for 2BMO and 5BFO, determined in ethanol at room temperature considering 1,4-bis(5phenyl-2-oxazolyl) benzene as standard fluorescent dye (quantum yield of 0.97), were found to be 0.68 and 0.71, respectively.

3.4. Quantum chemical calculations

3.4.1. Frontier molecular orbitals

Theoretical photophysical parameters were also estimated using DFT with B3LYP/6-311G(d) basis sets in Gaussian 09W. The optimised ground state molecular structures showing the dipole moment vectors of both the fluorophores are depicted in Fig. 7. The electronic structures and electron donor/acceptor capabilities of the molecules were estimated from frontier molecular orbitals, HOMO and LUMO (Fig. 8), and molecular electrostatic potential (MESP) map. The theoretical ground state energies E_{ROMD} , E_{LUMO} , ΔE and μ_g in gas and solvent phases computed using B3LYP/6-311G(d)-IEF-PCM solvation model are given in Table 5 and Table 6, respectively. The μ_g values of 2BMO and 5BFO in solvent environments are found to be higher than in gas phase, which may be due to solvation effect of different solvents.

HOMO-LUMO energy band gap (ΔE) values (Table 5) are in close agreement with the optical band gap values (E_g^{opt}) estimated from

Table 6 Theoretical μ_{μ} , E_{HOMO} , E_{LOMO} and ΔE of 2BMO and 5BFO in solvents.

Solvent	28MO				SBFO			
	$\mu_{g}\left(\Omega\right)$	E _{MOMO} (eV)	E_{triblet} (aV)	ΔE (eV)	$\mu_{2}(D)$	E _{HCMM} (aV)	Estimato (eV)	ΔE (eV)
n-Hexane	6.671	5.831	-2.239	3.602	7,943	-6.041	-2,537	9.504
Bettorne	6.963	5:833	2.220	3.604	7.950	-6,041	-2.519	3.522
Toluene	7.012	-5.835	-2.233	3.602	7.987	-6,041	-2.347	3.694
Ethyl acetore	7.288	-5.864	-2.236	3.628	8,932	-6.041	-2.327	3.714
THE	7,899	-5.892	-2,262	3,630	9.014	-6.042	-2.340	3.702
Dichlocomethane	8.221	-5.893	-2.259	3,634	9.112	-6.043	-2.307	3,736
Isopropanol	8.342	-5.892	-2.256	3.636	9.454	-6.041	2.311	3,730
Acetone	8.471	-5.892	2.262	3,630	9.491	-6.041	-2.327	3.714
Ethanol	8.566	-5.892	-2.284	3.608	9.495	-6:045	-2.349	3,696
Methanol	8.621	-5.894	-2.287	3.607	9.550	-6.045	-2.356	3.695
DMF	8,666	-5.894	-2.287	3.607	9.557	-6.041	-2.327	3.714
Accominge	8.732	5.894	-2.287	3.607	9.565	-6.045	-2,350	3.695
DMSO-	9.161	-5.896	-2.289	3.607	9.604	-6.046	-2.250	3.796

Table 7 GCRD parameters of 2BMO and 5BFO.

Parameter	ZBMO	5BFO
IP (eV)	5,789	6,059
EA (eV)	2.145	2,330
χ (eV)	3.967	4.194
µ (eV)	-3.967	4.194
ų (eV)	1.822	1,864
S (eV 1)	0.274	0.268
es (eV)	4.318	4.716

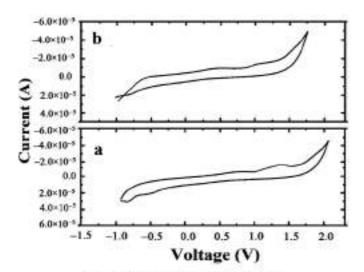


Fig. 9. CV curve of (a) 2BMO and (b) SBFO.

Table 8
Electrochemical properties of 2BMO and 5BFO.

Molecule	$E_Z^{\rm opt}$ (eV)	E _{ce} (V)	finono (eV)	E_{LOMO} (eV)
2BM0	3,563 (at 348 nm)	1.289	-5,587	-2.024
SBFO	3.573 (at 347 nm)	0.883	-5.668	-2.094

absorption spertra using Eq. (15).

$$E_k^{op} = \frac{1240}{I_{col}}$$
 (15)

Further, UV-Visible absorption spectra of 2BMO and 5BFO were theoretically computed using TD-DFT-B3LYP/6-31G(d)-IEF-PCM solvation model for all solvents (Fig. S1). For 2BMO, absorption maxims in benzene, ethanol and DMSO were observed at 393, 413 and 415 nm, respectively, and for 5BFO at 362, 381 and 401 nm (Table S5). The experimental values of absorption maxima in benzene, ethanol and DMSO for 2BMO and 5BFO were observed at 347, 348, 356 nm and 344, 347, 349 nm, respectively. The absorption maxima derived from theoretical and experimental methods differ by ~50 nm (Table S1, S2 and S5) and this deviation can be reduced by modifying the basis set in TD-DFT.

3.4.2. Global chemical reactivity descriptor (GCRD) parameters

To gain insight on the chemical reactivity and stability of 2BMO and 5BFO, global reactivity parameters, chemical hardness (η = (IP -EA)/2), electronegativity ($\chi = (IP + EA)/2$), chemical potential ($\mu = \chi$), chemical softness (S = 1/2 η) and electrophilicity index ($\omega = \mu^2/2\eta$). were calculated from E_{EOMO} and E_{LUMO} values [46], where, ionization potential, $lP = -E_{ROMO}$ and electron affinity, $EA = -E_{UMO}$. The GCRD parameters of 2BMO and 5BFO are given in Table 7. While a wider HOMO-LUMO gap is connected with stability and hardness, a lesser HOMO-LUMO gap signifies a more reactive soft molecule which is highly polarizable. 2BMO is observed to be softer compared to 5BFO (Table 7), probably attributed to the electron withdrawing 1,3,4-oxadiazole moiety with asymmetrically linked anisole. The presence of anisole group (electron acceptor) in 2BMO molecule leads to expansion of LUMO electron cloud and in case of 5BFO, the presence of electron donating secondary amine derivative (electron donor) compresses the LUMO electron cloud throughout the molecule which clearly displayed in Fig. 8. These results suggest that 2BMO is more reactive and less stable than 5BFO. Electrophilicity index assesses the chemical reactivity of molecules [47]. Since on the ω scale organic molecules with $\omega > 1.5$ eV are classified as strong electrophiles, both 2BMO and 5BFO may be considered as good electrophiles [48]. The negative chemical potentials (-3.967 eV and -4.194 eV) show that the synthesised fluorophores are stable. The chemical hardness values (1.822 and 1.864 eV) indicate lesser deformation of electron cloud of 2BMO and 5BFO under small perturbations.

3.4.3. Electrochemical properties

Electrochemical properties of 2BMO and 5BFO were studied using cyclic voltammetry (CV) employing tetrabutylammonium bexafluorophosphate in ethanol as supporting electrolyte at a scan rate of 100 mVs^{-1} (Fig. 9). E_{BGMO} and E_{LUMO} values for 2BMO and 5BFO were determined (Table 8) using Eqs. (16) and (17), with the onset oxidation potential values (E_{cor}^{corr}) obtained from CV graph [49].

$$E_{muni} = -E_{-}^{cont} - 4.44$$
 (16)

$$E_{COM0} = E_{HOM0} + E_x^{opt}$$
(17)

Experimental Emono and ELLINO values (Table 8) closely agree with the

Fig. 10. MESP plots for (a) ZBMO and (b) 5BFO.

values obtained from DFT computations (Table 5). 2BMO is found to have slightly higher values of E_{ECMO} and E_{LUMO} compared to 5BFO, in both the cases. This may be due to the presence of the electron with-drawing fluorobenzene group in 5BFO (Fig. 10 MESP) which results in the lowering of the reduction potential (CV) and LUMO energy level (DFT studies) [50].

3.4.4. Molecular electrostatic potential (MESP) plots

MESP maps constructed for 2BMO and 5BFO via DFT-B3LYP/6-311G (d) model are shown in Fig. 10. The MESP maps show a range of colours (red to dark blue) representing extreme negative (nucleophilic) to positive (electrophilic) locations on the molecule. In case of 5BFO, the strong positive phase (dark blue region) appears on nitrogen atom linked between oxadiazole and fluorobenzene and moderate negative (yellow) region around nitrogen atoms of oxadiazole ring. In 2BMO, moderate positive phase (light blue region) is spread over methoxy group and negative phase around the nitrogen atoms of oxadiazole moiety. The availability of sites for nucleophilic and electrophilic attacks in 2BMO and 5BFO suggests that these molecules may be introduced as hole or electron transporter in OLEDs and used for development of highly selective and sensitive chemosensors.

4. Conclusions

In this study, the solvatochromic and DFT studies on two bromofuran 1,3,4-oxadiazole derivatives, namely 2BMO and 5BFO, were carried out. The photophysical properties of these fluorophores were investigated by analysing their absorption and fluorescence spectra in various solvents. The bathochromic shift of fluorescence maxima with increasing solvent polarity suggests charge redistribution in the excited states. While μ_e values were determined by solvatochromic method and theoretical computations using Gaussian O9W software, Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, and solvent polarity parameter equations were used to estimate the μ_a values. The higher value of μ_a compared to μ_a suggests a more polar excited state for the fluorophores. The symmetry of the molecules remains unchanged upon excitation. The optical energy band gaps of 2BMO and 5BFO were found to be 3.563 and 3.573 eV, respectively. The GCRD parameters indicate both the fluorophores to be good electrophiles with 2BMO being more reactive and less stable than SBFO. DFT computational studies revealed both electron-deficient and electron rich sites of the molecules. Both 2BMO and 5BFO showed very good fluorescence quantum yields. The present study reveals the potential of 2BMO and 5BFO as candidates for optoelectronic and chemosensor applications.

CRediT authorship contribution statement

Lohit Naik: Conceptualization, Methodology, Investigation, Writing original draft. M.S. Thippeswamy: Conceptualization, Validation. V. Praveenkumar: Conceptualization, Methodology, Analysis. G.H. Malimath: Conceptualization, Methodology, Resources, Validation. D. Ramesh: Conceptualization, Methodology, Validation. Suraj Sutar: Methodology. Hemantkumar. M. Savanur: Methodology. S.B.

Gudennavar: Conceptualization, Methodology, Resources, Supervision, Writing - review and editing. S.G. Bubbly: Conceptualization, Methodology, Resources, Validation, Supervision, Writing - review and editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request,

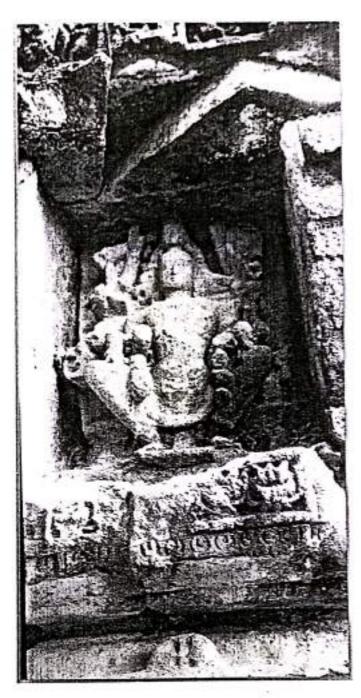
Acknowledgement

Lohit Naik expresses his gratitude to CHRIST (Deemed to be University), Bengaluru for the Post-doctoral position.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.jurgm.2022.108367.

References


- [1] J.A. Ricera, A.C. Cantillo, M.D.L.L. Moto González, Organic semiconductors, im: Semianusductors: Synthesis, Properties and Applications. Springer Nature, vol. 1, 2019, pp. 547–573.
- [2] C.W. Tang, S.A. Van Slyke, Organic electroluminessem diodes, Appl. Phys. Lett. 51 (1987) 913–915.
- [3] S. Su, N. Herron, H. Meng, Organic small-molecule materials for organic light mailtain diodes, in: Organic Light-Emissing Materials and Devices, 2 ed., CRC Press, Socs Rason, 2015, pp. 304–488.
- [4] A. Sakkinddin, M. Murangfer, R. Shahar Var, G.S. Majumder, M.J. Alisan, M. B. Bahman, Updates on synthesis and biological activities of 1,3,4-oxadinastic acrosses. Synth. Commun. 47 (20) (2017) 3805-1847.
- [5] T. Gloub, K. Sayeumkiewicz, P. Sastguk, Anti-comon activity of 6minuties of 1,3,4 cardinole, Nolecules 23 (2018) 1-16.
- [6] S.S. De, M.P. Khambere, M.S. Degani, Oxadianole mulfiolds in anti-tubes whosis drug discovery, Bioorg, Med. Chem. Lett 29 (16) (2019) 1999–2007.
- [7] J. Bourron, A. Hogaer, A. Ulmin, S. Wellner, A.T. Pinwight, Conditionles in medicinal chemistry, J. Ned. Chem. 55 (5) (2012) 1817–1830.
- [8] Y. Tao, C. Yang, J. Qin, Organic hunt materials for phosphurescent organic lightmutring diodes, Chem. Soc. Rev. 40 (2011) 2943–3976.
- [9] G. Hughes, M.B. Bryce, Electron transporting materials for organic electroluminescent and electrophosphocescent devices, J. Mater. Chem. 35 (2005) 84, 107.
- [36] G. Fan, Y. Lei, Z. Liu, E. Wung, Y. Lei, G. Li, Z. Xiong, X. Yang, High efficiency phrophoracent hybrid argume amagasic light emitting diadea using a solutionprocessed small-molecule emissive layer, ACS Appl. Mater. hamfoces 7 (2015), 20769–20776.
- [11] V. Ji Bam, A. Serbi, M. Noth, B. Pranap, Five-membered haterocycles, in: The Chemistry of Henerocycles, 2010, pp. 146–478.
- [12] S. Schultz, M. Brunz, L. Brehmer, Assumatic poly(1, 3, 4-examinous) as advanced manerials, Adv. Mater. 9 (1997) 601-613.
- [13] M. Thelakkut, H. W. Schmith, Low molecular weight and gulymeric heterocyclics as electron transport/hole blocking materials in seganic light-emitting floods, Polym. Adv. Technol. 9 (1998) 429–442.

- [14] Y. Hamada, C. Adachi, T. Dutem, S. Saito, line light-miniting regame electrohaminescent devices with confinmile times dyes as an emitter, Jpn. J. Appl. Phys. 31 (1992) 1812–1816.
- [15] C. Wang, M. Kilitziraki, L. O. Polsem, M.R. Beyes, A.P. Monkeum, LD.W. Sormel, Polymeric ukossy PED (2-(4-biphenylyl)-5-phenyl 1,3,4-madiazole) for lightemitting diodes, Adv. Funct. Mater. 11 (2001) 47-50.
- [16] M.S. Thipperwamy, L. Noth, C.V. Munthersmanh, G.H. Malimath, A comprehensive studies on photophysical and electrochemical properties of sovel D-8 A thiophene substituted L. 3, 4 anadianate derivatives for optoelectronic applications a computational and esperimental approach, Chem. Phys. S50 (2021), 111301.
- [17] M. Assouth Redrity, G. Mallesham, A. Thomus, K. Srinivas, V.J. Russ, K. Bhanupeskorlus, L. Giribabus, R. Graver, A. Kernar, M.N. Kamalasanand, R. Srinartava, Synthesis and characterization of novel 2,5-diphenyl-1,3,4-conflict sole derivatives of authoreme and its application as electron transporting bine emitters in OLEDs, Synth. Met. 161 (9) (2011) 569-890.
- [38] G. Androot, M. Formicz, V. Pist, L. Giorgi, T. Maretti, M. Micheloni, P. Pooli, R. Pootellini, P. Rooi, Efficient fluorestent sensors based on 2,5-diphenyl[1,3,4] oxadiozole: a case of specific response to Zn(II) at physiological pH. brog. Chem. 49 (21) (2010) 9940–9946.
- [19] J. A. Zhou, X. L. Tang, J. Cheng, Z. H. Ju, L. Z. Yang, W. S. Liu, D. C. Bai, An 1, 9, 4acodisionic based OFF-ON fluorescent chemoseneou for Za²⁺ in equeous solution and treaging application in living cells, Dalron Trans. 41 (35) (2012) 10026-10032.
- [20] L. Wang, Q. Bing, Z. Li, G. Wang, A new "ON OFF" fluorescent and calcolmetric elementary transf. on 1,3,4 conditions derivative for the descript of Car^{5c} Iona, J. Photochem. Photobool, A 360 (2018) 86–94.
- [21] L. Tang, Z. Zheng, Y. Bian, A.N. (7-hydroxyethyl) piperazine dangled 2.5-diphenyl-1, 2,4-exadiansle hazeff flavorarent sensor for aslective relay recognition of Cu^{2,4} and sulfide in wave, Luminescence 31 (2016) 1406–1400.
- [22] L. Tang, Z. Zheng, K. Zhang, Y. Rian, & 2,5 diaryl-1,3,4 exadinatio brand fluorescent probe for capid and highly selective recognition of hydrogen suilide with a large Knikes shift through recircling on USETT, Tatrohedron Lett. 57 (2016) 1361-1364.
- [23] C. Kmimar, M. Rora, S. Servi, S. Gür, Synthesis and antimicrobial activity of dinaphtho[2,1-b]foran-2-yl methanosis and their naine derivatives, Tuel. J. Chem. 23 (2) (2019) 375–384.
- [24] A.M. Piloso, S.P.G. Coeta, M.S.T. Gouralves, A naphthaj 2,7-b foran as a new flourement label: synthesis and sportral chaineterization, Tetrahedron Lett. 46 (2005) 4707–4740.
- [25] A.S. Klynchenku, T. Oznock, V.G. Pressanskoand, A.P. Deuchenku, Synthesis and spectrascopic properties of beaus and naphfurfuryl-3-hydrosychomomes, Can. J. Chem. 79 (4) (2001) 359-363.
- [26] V.P. Jennhar, G. Yadowastran, P. Kumar, S. Nieckim, P.J. Malickof, F. Badani, R. Savastava, S. Saha, Design and development of axially chiral bio(naphthofman) luminogens as fluorescent probes for cell imaging, Chemistry 27, (17) (2021) 5479–5482.
- [27] U. Mehmood, I.A. Hamen, M. Dand, New 1,3,4 confinede based photogramitizers for dyn sensitized order cells (DSSCe), Int. J. Photography 2015 (2015) 1–8.
- [28] L. Feng, Z. Chen, Light-emitting conjugated molecule containing 1,3,4-madianole, carbarole and nephthalese units, Spectrochim. Acia 63 (2006) 15–26.
- [29] D. Razresh, V.P. Vairlya, M.N. Sumanaswamy, G. Chandrashekhar, Synthesis of 2. (8-beamonaphtho[2,1-b]Siran 2-yij 5-myl 1,2,4-madiazoles as potential antiaticrobial agents, Int. J. Pharmaceut. Chem. Biol. Sci. 4 (2) (2014) 298-306.

- [30] E.Z. Lippert, Spektroskopische bestimming fes dipolinimenter ausmatischer serbindungen im sonen augeregten auguletzuntund, Z. Hehmschein, 61 (1957) 862–975.
- [31] N. Matago, V. Enifu, M. Koixgoni, Solvent efforts upon fluorescence spectra and the dipole moments of excited molecules, Bull. Chem. Soc. Jpn. 29 (1956) 465–470.
- [32] N.G. Bulthdries, N.G. Baldufliev, Universal international interactions and their affect on the position of the electronic spectra of molecules in 2-component solutions, Opt. Spectross. 16 (1964) 821-832.
- [33] A. Kawski, On the estimation of excited state dipole moments from solventedrumic shifts of above print and flavor scene: apecture, Z. Naturforech. 57A (2003) 255–262.
- [34] C. Brithardt, Solvanothromic tyes as solvent polarity indicators, Chem. Rev. 94 (1994) 2319-2358.
- [36] J.T. Edward, Molecular volumes and the Stokes Einstein equation, J. Chem. Educ. 47 (1970) 261–270.
- [36] M. Rari, T. Soujanya, A. Saroanta, T.P. Radhakrishnau, Escited state dipole acquents of some communic dyes from a subatochronic sierbod using the sulvest polarity parameter, J. Chem. Soc. Facaday, Trans. 91 (1995) 2709–2742.
- [37] M.J. Kamler, J.L.M. Abbood, R.W. Taft, Progress in Physical Organic Chemistry, vol. 13, John Wiley and Sons, New York, 1982, p. 685.
- [36] J. Gatshin, Tawards is generalized occument of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), aridity (SA) and basteity (SB) of the median, J. Phys. Chem. B 113 (2009) 5951-6960.
- [39] R.L. Joseph, Principles of Fluorescence Spectroscopy, third ed., Springer, New York, 2006.
- [40] M.B. Smith, J. Marsh, March's Advanced Organic Chemistry: Reactions, Mechanisms and Securities, sixth ed., Wiley, New York, 2012.
- [41] C. Parkanyi, J.J. Aaron, Dipole moments of aromatic heterocycles, Theory, Comput. Chem. 5 (1998) 213–258.
- [42] J.J. Agron, M. Masii, C. Kerneber, C. Parkanyi, M.S. Amminua, N. Mineharki, A solvenochromic study of new beams[a]phenothiarines for the determination of hipole moments until specific solves solvent interactions in the first certaid singles store, J. Photochem. Photobiol., A 301 (1996) 327–336.
- [43] A. Adenier, J.J. Annar, C. Parhanyi, G. Deng, M. Sallah, Solvans offices on the electronic absorption and fluorescence emission spectra of merocyaniae 540 - a biological probe, Hoteroryel, Commun. 2 (5) (1994) 403–408.
- [44] Y.G. Selie, L. Sidir, Solvent offset on the absorption and flamourous spectra of 7-actions 6-(2,3-dibromogropyl) 4,8-dimethylcommunic determination of ground and excited state dipole momenta, Spectrochum, Acta Mni, Hinnud, Spectrona, 102 (2013) 286–296.
- [45] M.R. Smith, J. March, Advanced Organic Chamistry: Beneziona, Marhaminus and Structure, stath ed., Wiles, New York, 2012.
- [46] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, NewYork, 1989.
- [47] V.K. Chmellury, A.K. Blant, D. Dush, N. Sharma, BFT calculations on molecular structures. HOMO-DJMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotic (IV) 3-chloridophenylaceschydroxanute sampleses, J. Comp. chem. 40 (27) (2019) 2254–2363.
- [48] L.R. Domingo, M. Gutiérrez, P. Pérez, Applications of the conceptual density functional theory indicas in organic chemistry mactivity, Molorales 21 (2016) 746.
- [49] N. Prachamak, S. Pansay, S. Namangruk, T. Kaewin, S. Jungsuttiwong, T. Sudyoudnok, V. Promansk, Synthesis and elacutestration of rurbande dendrimers as solution-processed high T_n onverphous hole transporting minerials for electroluminescent devices, Eur. J. Org. Chem. 29 (2013) 6619–6628.
- [50] A. Adonyi, T.L. Ngoke, Jennet Connelle, Cyclic voltammetric study of 2-hydrox ybeacoplienous (HSP) derivatives and the correspondent change in the mbital energy levels in different solvents, Electromolysis 82 (2020) 12 3659-3668.

वर्ष : ९० सप्टेंबर २०२२ अंक ३

इतिहासाचार्य वि. का.राजवाडे संशोधन मंडळ, धुळे

-10 40

इ.चि.का. राजवाडे संशोधन मंडळातील नंदुरबार दप्तर पत्रे

प्रा.उज्जबला भिरुड, जळगाव --

मडळाचा त्रेमासिक अहवाल - श्री,राधेश्याम वर्मा ----

\$ \$ \$

-0.2

इ.चि.का. राजवाडे संशोधन मंडळातील मोडी कागद्पत्र

- प्रा. श्रीपाद नांदेडकर, क्युरेटर, धुळ----

-64

-166

अनुक्रमणिका

					$\overline{}$
e	×	w	~	-10	
विदर्भातील रेल्वेचा विकास १८५३-१९१० - डॉ.प्रभाकर गंद्रे, आमगाव	छत्रपती शिवाजी महाराजांच्या गड-किल्ल्यांवरील आदर्श शासनव्यवस - डॉ.मधुकर जाधव, हलकर्णी, ता.चंदगड, जि.कोल्हापूर२	अहिराणी बोलीतील व्यंगार्थता - डॉ. योगिता पाटील, धुळे१	राजवाडे युग आणि महाराष्ट्रातील इतिहास मीमांसा - डॉ. थि. ल. धारूरकर, पुणे	आवाहन	

मेथीचा बेकुंठ - प्रा.डॉ.किरण देशमुख, पुण -खानदेशातील आदिवासीचे सातत्यपूर्ण उठाव (१८१८-१८८९)

शोधनिबंध पाठवावेत ही आग्रहाची विनंती होय.) (अतिमहत्त्वाचे : सर्वच शोधनिबंध लेखकांनी अवलोकन करून त्यानुसार

आपले मुख्य ध्येय राहिले आहे. याच अनुषंगाने 'संशोधक' अंकात प्रकाशनाकरिता करण्यात येते की, आपल्या 'संशोधक' अंकाचा दर्जा सतत उंचावत ठेवणे हे संशोधन पद्धतीनुसार बार्बीची परिपूर्णता होणे आवश्यक आहे. याविषयीच्या आपण जे शोधनिबंध पाठवितो, त्यात सर्वसाधारण ऐतिहासिक आणि समाजशास्त्रीय सूचना खालीलप्रमाणे तपशीलबार देत आहोत. सर्वश्री मा.सभासद, संशोधक, लेखक, अभ्यासक यांना विनम्रपणे आवाहन

१) शोध निबंधांची पृष्ठसंख्या ही मर्यादित असावी. त्याकरिता किमान १५०० शब्द ते कमाल २००० शब्दाची मयोदा पाळाबी

२) संदर्भ देताना संशोधन पद्धतीचा अवलंब करावा. उदा. भागरे डॉ.सर्जेराब, *आदिवासींचे उठाच*, अपरांत प्रकाशन, पुणे, २०१५, पृ.२५.

अ) स्वतः लेखक असल्यामुळे तसा उल्लेख करावयाची आवश्यकता

 मळी डॉ.मा.गो. (संपा.), सावित्रीबाई फुले काल आणि कर्तृत्य, महाराष्ट्र राज्य साहित्य आणि संस्कृती मंडळ, मुंबई, २००६, पृ.६५.

राणी दुर्गावती - श्याम वद्य, नासिक. --

- प्रा.डॉ.जुगलिकशोर दुबे जळगाब, प्रा.पोपट गायकबाड, साक्री --४१

भारतीय रेशीम उद्योगाचे स्वरूप व महत्त्व : ऐतिहासिक विश्लेषण

- डॉ.व्ही.जी. सामकुबर, नंदुरबार ---

मिथिला की संस्कृति एवं कला - डॉ.रश्मि झा,पटना ----

-- 49

भारताचे आण्विक धारण

- डॉ.डी.क. पाटील, धुळ -

क) वरील संदर्भ क्रमाने आला असता तत्रैव किंवा किता म्हणावे. पृ.बदलले तर तत्रैव, पृ.क्र.(पृष्ठक्रमांक टाकावा) असे म्हणावे.

ड) बरचा एखादा संदर्भ काही संदर्भानंतर आल्यास उपरोक्त किंवा पूर्वोक्त तेही बरील संदर्भ असा सरळ निर्देश व्हाबा म्हणून बरील संदर्भांचा लेखक किंवा संपादकाचे नाव देवून मग उपरोक्त किंवा पूर्वोक्त लिहिणे लिहिण्याची पद्धत आहे. मात्र नुसतेच उपरोक्त किंवा पूर्वोक्त न लिहित क्रमांक द्यांबा

असावा उदा.डॉ.सर्जेराच भामरे, उपरोक्त क्र.०१, पृ.६१, असा स्पष्ट उल्लेख

छत्रपती शिवाजी महाराजांच्या गड-किल्ल्यांवरील

आदशे शासनव्यवस्था

डॉ.मधुकर जाधव, हलकर्णी, ता.चंदगड, जि.कोल्हापूर

स्वराज्यातील दुर्ग व्यवस्था : महत्त्व आहे. छत्रपतींच्या गड-किल्ल्यांवरील शासनव्यवस्था आदर्श अशी होती छत्रपतींच्या स्वराज्यात गड, कोट, किल्ले, दुर्ग, गढ्या, जंबीरे यांना अनन्यसाधारण केले. त्यासाठी छत्रपतींनी नबीन किल्ले बांधले व जुने दुरुस्त केले. छत्रपतींनी छत्रपतींची अद्वितीयता व स्वराज्यातील भक्कमता किल्ल्यावरून दिसून येते. स्वराज्यातील प्रत्येक गड-किल्ल्यांवरील शासनव्यवस्था अगदी चोख असे. शौर्याचे व पराक्रमाचे साक्षीदार आहेत. स्वराज्याची महान शिल्पे आहेत. झाले. महाराष्ट्र हा गड-किल्ल्यांचा देश आहे. गड-किल्ल्बांच्या साहाय्याने वैभवशाली इतिहास घडला आहे. सह्याद्रीच्या कुशीत बसलेले गड-किल्ले म्हणजे आदर्श दुर्ग नीतीमुळे डोंगर-दऱ्यांत चसलेल्या गड-किल्ल्यांना श्रेष्ठत्व प्राप्त स्वराज्य स्थापनेत गड-किल्ल्यांना महत्त्व प्राप्त करून दिले. छत्रपतींच्या था छत्रपती शिवाजी महाराजांनी गड, कोट, दुर्गांच्या साह्याने स्वराज्य उभे

सर्वा २०२२ होते. हे परकीय लोक छत्रपतींनी बेगबेगळ्या किल्ल्यांच्या कामांबर नियुक्त केले लोक नियुक्त केले होते. यामध्ये स्वराज्यातील मावळ्यांबरोबरच परकीय लोकही छत्रपती शिवाजी महाराजांनी दुर्गबांधणी च त्याची निगा राखण्यासाठी अठरा हजार आणि ते अधिक बळकट करणे या गोष्टींकडे छत्रपतींनी काटेकोरपणे लक्ष दिले. सागरी किनाऱ्यावर किल्ले बांधणे व त्याची व्यवस्था ठेवणे, ते सुसज्ज करणे आणि तितके जगात अन्यत्र कोठे असे बालूम दुर्ग नाहीत. डोंगर-कड्यावर व छत्रपतींनी उमे केलेले सर्वच गड-किल्ले लढाऊ आहेत. महाराष्ट्रात आहेत तसे बेटांबरचे जंजिरे म्हणजे पाणकोट असे विविध प्रकारचे किल्ले असलेला अवधा महाराष्ट्र हाच किल्ल्यांचे एक संग्रहालय आहे. महाराष्ट्राचे आराध्य दैवत छत्रपती शिवाजी महाराजांच्या शौर्याची गाथा सांगत आजही हे किल्ले उभे आहेत. गिरीदुर्ग, बनदुर्ग, भुईकोट, जलदुर्ग म्हणजे सागरी किनाऱ्यांबरचे किल्ले,

> तरतूदी केल्या जात असत. छत्रपर्तीनी अण्णाजी दत्तो व आबाजीपंत या सूचना देत असत की दारुगोळा, शस्त्रे, अन्नपाणी याबरोबरच इतर साहित्य आहे अधिकाऱ्यांकडून सर्व किल्ल्यांची व्यवस्था चोख ठेवलेली होती.' की नाही हे पाहिले जात असे. त्याप्रमाणे विविध किल्ल्यांवरती बेगबेगळ्या करत असत. छत्रपती स्वत: प्रत्येक किल्ल्याला भेट देत असत व अधिकारीवर्गाला इतिहासाचार्य थि. फा. राजवाडे संशोधन पंडळ, धुळे रियासतीमध्ये आलेला आहे.' तो असा- 'छत्रपती सर्व किल्ल्यांची पाहणी नेहमी १४५ किल्ले छत्रपतींनी बांधलेले होते. या १४५ किल्ल्यांचा तपशील मराठी शिवाजी महाराजांच्या मृत्युसमयी स्वराज्यात एकूण ३६० किल्ले होते. त्यातील चित्रगुप्त बखर-३६१, चिटणीस बखर-३१७, समासद बखर-२४०³. छत्रपती स्वराज्यातील गड-किल्ल्यांची संख्या खालीलप्रमाणे दिली आहे, ती अश्री अधिकारी, तंत्रज्ञ, बेलदार आदी. लोकांची कायमस्बरूपी नेमणूक केली होती. होते. किल्ल्यावरील शासनव्यवस्थेतील अधिकाऱ्यांबरोबरच बांधकामासाठी लाग्णाहे संशोधक

गड-किल्ल्यांची प्रादेशिक व्यवस्था :

प्राणगड, केजरगड, मनगड, देवगड, यशवंतगड, रंजनगड, बहिरवगड, रामगड संरक्षण केले. गगनगड, मदनगड, केवळगड, जगदेवगड, पतनगदनगड, प्रबळगड होते.' कोकणात घाटाखाली मोठ्या प्रमाणात किल्ले उभे करून स्वराज्याचे भूषणगड, देवगिरी, चांदवड, अजिंक्यतारा आदि गड-किल्ले स्वराज्यामध्ये येत स्वराज्याच्या प्रदेशावर नियंत्रण निर्माण केले." स्वराज्यातील देशावरील किल्ले पट्टागड, अंकाई-टंकाई, हातगड, केळजगड, अहिबंतगड, चंदन-बंदन, कुरंगगड लष्करीदृष्ट्या मजबूत आहेत. वसंतगड, पांडवगड, कमलगड, सञ्जनगड, रतनगड पुरंदर, प्रबळगड, साल्हेर, मुल्हेर, तोरणा, शिवनेरी, लोहगड, ईसागड, हातगड महत्त्वाचा होता. रायगड, राजगड, रोहिडा, पन्हाळगड, सिंहगड, प्रतापगड घडामोडींचे केंद्रच हे घाटमाध्यावरील किल्ले होते. घाटमाध्यावरील प्रत्येक गड उत्साह, चैतन्य निर्माण करण्याचे धोरण छत्रपतींनी नेहमीच ठेवले. प्रत्येक गड हरिस्चंद्रगड, विशाळगड, तिकोना, तुंग या किल्ल्यांच्या अनुषंगाने छत्रपतींनी किल्ल्यांना विशेष महत्त्व प्राप्त झाले होते. स्वराज्याच्या राजकीय घटना ब किल्ल्याच्या कारभाराची स्वतंत्र व्यवस्था असे.' स्वराज्यामध्ये घाटमाध्यावरील छत्रपतींच्या प्रत्येक गडावर सरकारी सैन्य असे. गड-किल्ल्यावरील सैन्यात

सर्वा २०२२

संशोधक

आज़ादी क अमृत महोत्सव

इतिहासाचार्य वि. का.राजवाडे संशोधन मंडळ, धुळे

डॉ. मधुकर जायब, हराबा १२. यादवकालीन खानदेशाती प्रा. डॉ. हिरालाल चीघरी १३. स्वातंत्र्य संग्रामात खामगाव	हाँ, अभिलाषा राऊत, नगपूर- ११. छत्रपती शिवाजी महाराजांचे अ	(A) (C)	्र. डॉ. रतन आर. चौधरी, वर्धा. ९. बंजारा भाषेचे समाजशास्त्रीय			विश्लेषणात्मक आजन्म श्री.गोपाळ निंबाळकर, मोराणे. कमलाबाई अजमेरा यांच्या स्त्री			२. आवाहन 3. नंदरबार जिल्ह्याच
डॉ. मधुकर जायन, हराजाता, जिल्लाम स्वित जीवन यादवकालीन खानदेशातील धर्मपंथ आणि धार्मिक जीवन प्रा. डॉ. हिरालाल चीधरी स्वातंत्र्य संग्रामात खामगाव येथील टिळक राष्ट्रीय	हाँ. अभिलाषा राऊत, नागपूर. छत्रपती शिवाजी महाराजांचे आदर्श मानवतावादी धोरण	हाँ. प्रमिला भुजाडे (गणबीर) नागपूर. छत्रपती शिवाजी महाराज, मध्ययुगीन भारतीय इतिहासातील श्रेष्ठ युद्ध रणनीतीकार	जात्य स्थार डॉ. रतन आर. चौधरी, वर्धा. बंजारा भाषेचे समाजशास्त्रीय अध्ययन	प्रा. श्री. राहुल मगर, पुणे भारतिक विकासाच्या दृष्टीने दृग्ध व्यवसाय	श्री. उदय दिलीप पाटील, पुळे. अकबर आणि तारिख इ–अल्फी	त्रश्लेषणात्मक अञ्चन्तः श्री.गोपाळ निंबाळकर, मोराणे. कमलाबाई अजमेरा यांच्या स्त्री शिक्षण कार्याचा अभ्यास	डॉ. सुरेंद्रजी ठाकूर, औरंगाबाद. स्वातंत्र्योत्तर काळातील महिला विकासाची वाटचाल	डॉ. शस्त्र बाबूसव सोनवणे, साक्री. मराठवाड्यातील आत्महत्याप्रस्त शेतकऱ्यांचा बळी	आवाहन नंदरबार जिल्ह्याचा ऐतिहासिक परिचय
णि धार्मिक जीवन ६४ कराष्ट्रीय ६९	ब्ताबादी धोरण ५७ तपर	तीय ५१	ъя	44 40	२९	र्गचा अभ्यास २४	वाटचाल १६	ৱা ৰক্তী ৫	-10
			- 1	42	₹0.	\$ 5°		26	? ę.
2 10			4	श्री. राधेश्याम श्रद्धांजली	प्रा. श्रीपाद माध् मंडळाचा त्रेमा	डॉ. उज्ज्वल भि इ. वि. का. रा.	in Manjula - डॉ. दिपक दे इ.ति.का.स.	प्रा. अमिता कु	प्रा. सताश पाट आजादी के बात

	Ž,	20.		.0	- 5	8		-	6		÷.		20.		×	
	श्री. राधेश्याम वर्मा, व्यवस्थापक.	मंडळाचा त्रैमासिक अहवाल	प्रा. श्रीपाद माधत नांदेडकर, क्युरेटर.	इ. वि. का. रा. सं. मंडळातील मोडीपत्र	डॉ. उज्ज्वल भिरूड-नेहेते, जळगाव. (लिप्यंतर)	इ.वि.का.रा.सं.मं. मोडीकागदपत्रे-नंदुरबारदप्तर-२ पत्रे	- ह्रॉ टिपक टेवरे, धळे.	in Manjula Padmnabhan's Play Lights Out	Gender Discrimination and Female Exploitation (**)	प्रा. अमिता कुमारी, बाराणसी	आजादी के बाद की राजनितीक स्थिती	प्रा. सतीश पाटील, फैजपूर.	'खानदेश गांधी' बाळूभाई मेहता	प्रा. आनंद सोनवणे, नवलनगर.	मराठी साहित्य आणि संस्कृती	
200		111	2	808		500			tation		,	3	53		69	

संदर्भसूची :

- www.researchgate.net (August 2013) (An article Understanding the Geographical Vision of Chatrapati Shivaji Maharaj' by Dipesh Karamkar).
- Sardesai, G. S.; New History of Marathas' Vol.I, Phoenix Publication, Bombay, 1946, Page No. 98.
- देशमुख विजयराव: 'शककर्त शिवराय', खंड ? छत्रपती सेवा प्रतिष्ठान प्रकाशन. नगपूर, २०१०, पृ. ४४८
- तत्रेव पू. ४४९
- Karmakar, D.; (2013)
- देशमुख विजयराव, उपरोक्त ०३, पृ. ४४४-४४५
- तत्रेव पु. ४४५
- तत्रेव पृ. ४४६
- भावे वा. क्., शिवकालीन महाराष्ट्र, बरदा प्रकाशन, पुणे, १९९८ पृ.१०८
- www.hindujagruti.org (लेख शिवरायांची युद्धनीती. लेखक-निनाद बेडेक्स)

8888

छत्रपती शिवाजी महाराजांचे आदर्श मानवतावादी धोरण

हलकर्णी, ता. चंदगड, जि. कोल्हापूर – डॉ.मधुकर विठाबा जाधव

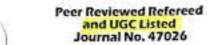
व्यर्थ कत्तल नेहमीच टाळली. शरण आलेल्या शत्रू सैन्याला नेहमीच अभय दिले सूत्राचा पाया घातला. नवीन सुत्रांचा अबलंब केला. त्यांनी आपल्या ध्येय धोरणातून मानवताबादी जगामध्ये अनुकरण होताना दिसत आहे. हेच छत्रपतींच्या मानवताबादाचे श्रेष्ठत्व छत्रपतींनी जगाला मानवताबादाची अमूल्य अशी तत्त्वे दिली. या तत्त्वाचे आजही विचार डोळ्यासमोर ठेऊन युद्ध, लढाय्या व मोहिमा केल्या. छत्रपतींनी युद्धामध्ये निमति म्हणून ते सर्वश्रेष्ठ आहेत. अखिल मानबाच्या कल्याणासाठी छत्रपतींचे मानबताबादी होय. छत्रपती माणुस हाच केंद्रबिंदु मानुन स्वराज्याचे प्रत्येक ध्येय धोरण ठरवित जनतेच्या मनामध्ये निर्माण झाली. ती प्रजा छत्रपतींसाठी जीवाची आहुती देऊ लगाली निर्माण केला. स्वराज्यातील स्त्री वर्गाला सुरक्षितता मिळाली. प्रजेला विश्वास मिळाला असत. त्यामुळे त्यांच्या विचाराला श्रेष्ठत्य प्राप्त झाले. छत्रपतींनी नेहमीच नव-कुणविणी अगर कलांबतिणी बरोबर नेऊ नयेत. कुणीही स्त्रीस बटकीण बनविता काम आपल्या सैन्याला सक्त आज्ञा दिली होती की मोहिमेबर जाताना कुणीही बटकिणी विचाराला व कृतीला तेज आले. यातुन छत्रपतींचे प्रत्येक धोरण घडत गेले. महाराजान मरणाला कबटाळू लागली, स्वराज्यासाठी होतात्म्य स्वीकारू लागली. त्यामुळे छत्रपतींच्य राजे आपल्या सुख-दु:खात सामिल होतात ते आपले आहेत ही भावना सर्व सामान्य विचार श्रेष्ठ ठरतात.' त्यांनी मध्ययुगीन इतिहासामध्ये प्रथमत: नैतिकतेचा चस्तुपाठ छत्रपती शिवाजी महराज हे थोर मानवताबादी राजे होत. कल्याणकारी शासनव्यवस्थेचे

मानवताबाद व न्याय तत्त्वाची मजबूत सूत्रे दिली. छत्रपतींनी नेहमीच मानवतावादी

आदर्श निर्माण करणारे सर्वश्रेष्ठ राजे होत. त्यांनी आपल्या कार्यातून जगाल

छत्रपती शिवाजी महाराज हे जगातील शासनकर्त्यासमोर मानवतावादी मूल्यांचा

केले. त्यामुळे छत्रपतींच्या कालखंडामध्ये स्त्री जीवन सुखी व आनंदी होते. छत्रपती शिवाजी महाराजांच्या स्वराज्यात स्त्री जातीचा आदर व सत्कार केला जात होता. स्वराज्यामध्ये स्त्रिया स्वराज्यात स्त्री जातीचा आदर व सत्कार केला जात होता. स्वराज्यामध्ये स्त्रिया व मुले यांचे सर्व परिस्थितीमध्ये सरक्षण केले जाई. मोहिमा व स्वराज्याच्या छावणीमध्ये स्त्रियांचा पूर्ण बंदी होती. हा हुकुम जर कोणी महाराजांनी स्त्रीयांच्या सरक्षणांची सक्त ताकीद सैन्यांचा दिली होती. हा हुकुम जर कोणी मोडेल तर त्यास कडक शिक्षा करण्यात येई. त्यामुळे त्याचा धाक इतर सैन्यांचर बसून ते तसे कृत्य करण्यास धजत नसत.' मुस्लिम लेखक खाफीखान छत्रपतींच्या उदार धार्मिक धोरणांचे काँतुक करतांचा महणतो. छत्रपतींची आपल्या सैनिकांकरिता असा सक्त नियम केला होता की सैनिक ज्या – ज्या ठिकाणी युद्ध व लढाय्या करण्यास जातील तेथे – तेथे त्यांची मशिदीस कुराण, ग्रंथास अथवा कोणत्याही स्त्रीस जास देऊ नये, जर एखादा कुराणांचा ग्रंथ हाती आला तर त्याबद्दल पूज्य भाव दाखबून तो आपल्या मुसलमांच चोकरांचे स्वाधीन केला जाई.'


छत्रपती शिवाजी महाराजांनी औरंगजेबास पाठविलेल्या जिड़ीया करा संदर्भातील पत्रात म्हटले आहे. मुसलमान मिश्रदीत बांग देत आणि हिंदू लोक देवळात घंटा वाजबून पूजा करतात. हे दोन्ही प्रकार परमेश्वराची पूजा करण्याचेच आहेत. म्हणून प्रजेपकी काही लोकांबर कर लाबून अन्यास करणे हे केवळ पश्चपाती घोरण आहे असे माष्ट केले." पुढे छत्रपतींनी औरंगजेबाला खुले आव्हान दिले आहे. त्यांनी म्हटले आहे. जिड़ीया कर अन्यायाने बसबून जुलमाने बसूल करायचा असेल तर तो माझ्याकडून बसूल करावा. राज्यातील प्रजेकडून नव्हे. तेवहा प्रजेचा छळ न करता हिंमत असेल तर औरंगजेबाने आपल्याकडूनच कर वसूल करावा असे आव्हान छत्रपतींच्या स्वराज्याची छत्रपतींचे रयतेचे कल्याणकारी निधर्मीय घोरण स्पष्ट होते.' छत्रपतींच्या स्वराज्याची छ्येय व उद्दिष्ट्ये सांगताना आज्ञापत्रामध्ये रामचंद्रपंत आमात्य म्हणतात. लोकांचे रक्षण करणे, सार्वजनिक हिताची कामे करणे, कायद्याप्रमाणे न्याय निवाडा करणे, देशाच्या रक्षणाकरीता लब्बरी व मुलकी सेवा संघटित करणे व जनतेच्या कल्याणाचे संवर्धन करणे हे छत्रपतींच्या स्वराज्य स्थापनेमागील उद्देश होत.''

आपल्या स्वराज्यातील रयतेसाठी छत्रपती आहोरात्र कष्टले. रयतेचे रक्षण करणे हे आपले आद्य कर्तव्य आहे असे छत्रपतींचे ठाम मत होते. छत्रपतींनी पोटच्या मुलापेक्षाही

छत्रपती शिवाजी महाराजांनी शेतकऱ्यांच्या हितासाठी व विकासासाठी जे रचनात्मक सुधारणावादी धोरण राबविले होते ते आजही आपणास मार्गदर्शक ठरत आहे. रामचंद्रपंत आमात्य यांच्या शब्दांत सांगायचे झाले तर 'राजांनी स्वराज्याच्या माध्यमातून जुतन सृष्टीच निर्माण केली.''' 'वतनदार व जिमनदारांची अव्यवस्था महाराजांनी पार मोझून सृष्टीच त्यतेकडून वसुलीची कामगिरी करण्यासाठी सर्वत्र अधिकारी नेमून दिले. पूर्वीच्या जिमनदारांनी व मिरासदारांनी स्यतेला कोणत्याही बाबतीत काडी इतका जास

छत्रपतींनी गुलामांच्या व्यापारावर पूर्णपणे बंदी घातली. '' शिवाजी महाराज तामिळनाडूतील तिरूवाडी येथे असताना डचांबरोबर एक व्यापारी करार झाला त्यात छत्रपतींचे गुलामांच्या व्यापारावर प्रतिबंद करणारे जे कलम आहे ते असे इतर कारिकरीत मुसलमानंच्या राज्यात कोणाकडूनही अटकाव न होता. तुम्हाला स्नी-पुरूष यांना गुलाम म्हणून विकत घेण्याची आणि विकण्याची अनिर्वंध परवानगी होती. पण माझ्या स्वराज्यात की-पुरूष यांना गुलाम म्हणून विकण्याची व विकत घेण्याची परवानगी केण्याची परवानगी मिळणार नाही. असे काही करण्याचा प्रयत्न कराल तर माझी माणसे तुम्हाला प्रतिबंध करतील. या कलमाचे काटेकोर पालन झालेब पाहिजे. अशा प्रकार छत्रपतींनी परकींयाना समज दिली व आपले स्वराज्य सर्व सामान्यांच्या हितासाठी आहे हे दाखबून दिले.''

छत्रपती शिवाजी महाराजांनी धर्मपरिवर्तनाचे क्रांतिकारी पाऊल उचलून मुसलमान झालेल्या हिट्ना पुन्हा हिंदू धर्मांत आणण्याचा प्रयात पाडला.'' महमंद कुलीखान झालेल्या नेताजी पालकरला महाराजांनी १९ जून १६७६ रोजी विधिपूर्वफ पुन्हा हिंदू धर्मांत प्रवेश दिला. छत्रपतींचे मोठेपण हे आहे की आठ वर्षे मुस्लिम धर्मांत राहिलेल्या नेताजीला त्यांनी शुद्ध करून परत हिंदू धर्मांत घेतले. त्यांच्याबरोबर त्यांच्या पत्नी व मुले यांनाही शुद्ध करून धेतले.'' ही एक धर्मक्रांती होती. तेव्हा राजे म्हणाले होते बाट चुकलेल्या लेकराला पुन्हा धर्मांत प्रवेश मिळत नसेल तो धर्म फसला. यावरून महाराजांचे पुरोगामी धर्म विषयक विचार स्पष्ट होतात.'' छत्रपती शिवाजी महाराजांनी बावाजी निंबाळकर या प्रतिष्ठित सरदारास विजापूरच्या दरबाराच्या बळजबरीने इस्लाम व्हावे लागले होते. छत्रपतींनी त्यास शुद्ध करून परत हिंदू धर्मांत घेतले. यात बाबाजींचा

ISSN 2319 - 359X AN INTERNATIONAL MULTIDISCIPLINARY HALF YEARLY RESEARCH JOURNAL

IDEAL

Volume - XI, Issue - II, March - August - 2023 English / Marathi

Impact Factor / Indexing 2023 - 7.537 www.sjifactor.com

CONTENTS OF MARATHI

37.76.	लेख आणि लेखकाचे नाव	पृष्ठ हरू.
1	भारतीय स्वातंत्र्य सवपानीस नुभान सेनेचे पीगधान हो, मधुकर विठीमा जाधव	1.0
2	लोकोशर स्त्री समाजसुधारक : पंदिता रमावाई काँ, नागणे हणमंत बाळकृष्ण	6-4.8
3	स्वतंत्र भारताची रणशिष्यी : हीसाताई पाटील मा. डॉ. बिस्ट ब्रानु राजने	१4-१७
¥	वाश्त्रहा (तामोखाडा, जिस्हा-पालपा) येथील सेजी एक पेतिहासिक स्थळ डॉ. संतोष हनुमंत जायव	१८-२२
4	समाजसुधारक आणि गहिला सवलीकरण : एक अभ्यास प्रा .डॉ. कदम संतोष तुकाराम	23-20
Ę	मत्त्रकापूर शहराचा आर्थिक विकास प्रा. डॉ. सोनावले राजेंद्र रघुनाथ	26-30
v	प्राचीन भारतातील बदार मजूर : एक दृष्टिक्षेप जगन्माध बाबासो सावंत	38-78
4	पश्चिम महाराष्ट्रातील सी सुधारणा चळवळीतील पीडला रमावाई याँचे कार्य श्री. जमादार फिरोइरखान इम्प्रम	80-43
٩	डॉ. रखनाबाई - एक अनोखे सीत्व प्रा. कुंभार संध्या शिकाप्या	43-40
20	ड्या मेहता यांचे चले जाय चळवळातील कार्य डॉ. निळकंड कामण्णा लोखंडे	46-63
2.5	पश्चिम महाराष्ट्रातील क्रांतिकारी स्तिया प्रा. प्रिया अशोक क्षीरसागर	68-66
6.5	क्रांति वीरंगणा हीस्पताई पाटील प्रा. मधिन शंकर ओवळ	£6-00
53	सानारा वस्तुसंबहालवातील नलवार : एक पैतिहासिक अभ्यास सी. सुजाता सचिन देशपुख	64-00
ix	हिंदू कोड बिल आणि हो. बाबासाहेब आंबेडकर प्रा. बिनोद किसन आखाडे	06-68
१५	भारतीय समाजतील सियाँचे बदलते स्थान प्रा. अमित अरुण कदम	65-66

१. भारतीय स्वातंत्र्य लढ्यातील तुफान सेनेचे योगदान

डॉ. मधुकर विठोबा बाधव इतिहास विभाग, पश्चेत्रसथ चळाण महाविद्यालय, हत्वकर्ण, ता. चंदगढ, जि. कंत्कासूर,

प्रस्तावना

प्रतिसरकाची तेषान सेना म्हणने आधुनिक पंत्तिस व्यवस्थाय होती, तुषान सेनेये कार्य महतने प्रतिसरकारच्या चळवळीचा प्राण होता, क्रांतिसिक जाना पाटील गांनी स्थापन केलेल्या प्रतिसरकार मधील तुषान सेना दल महत्वपूर्ण भाग होय, तुषान सेना दल पहणने जनतेचे याईक होते, तुषान सेनेया कोणताही कार्यक्रम दिखावती नकता, तुषान महापने दिलतांचा प्राण, तुषान महापने गिसांचे अन्य असे ते मानीत असत, भारतीय स्यातंत्र्य चळवळीत प्रतिसरकारच्या तुषान सेनेये योगदान महत्त्वपूर्ण आहे, सामान्य अनतेच्या मदतीतून य सहकार्यातून क्रांतीसिह माना पाटील यांनी आपल्या प्रतिसरकारचा पाया रचला. प्रतिसरकारची स्थापना झाल्यानंतर त्यांच्या कार्यक्रमाची अंमलबनावणी करण्यासाठी समय दलाची आवश्यकता भासू लागली. कारण इंग्रज सनेला तर विरोध कराव्याचाय होता पत्तु त्याच बरोबर प्रतिसरकारने केलेल्या सुधारचेतून ज्यांचे हित संबंध दुखावले गेले. त्या सर्वांचा विरोध मोडून कादायचा असेल तर आगले स्वतःचे सैनिक संघटन हवे ही गोष्ट लकात पेऊन तुषान सेनेयी निर्मिती करण्यात आली.

संशोधनाचे उद्देश

- १. स्वातंत्र्य चळवळीतील तुफान सेनेच्या कार्याचे महत्त्व स्पष्ट करणे.
- क्रांतिसिंह नाना पाटील यांनी पारतंत्र्याविरुध्द दिलेल्या लड्याचे योगदान स्पष्ट करणे.

गृहीतक

क्रांतिसिंह नाना पाटील यांनी स्थापन केलेल्पा तुफान सेनेचे कार्य देशाला प्रेरणा देणारे आहे.
 मुख्य य सूचक शब्द: वीरांगना, भूनिगत, प्रशिक्षण, कॅप्टन, स्वराज्य, कष्टकरी, क्रांतिवीर

संशोधन पद्धती

प्रस्तुत संशोधनासाठी ऐतिहासिक संशोधन पदतीचा अवलंब काण्यात आलेला आहे. महत्वपूर्ण अशा प्राथमिक थ दुव्यम साधनांचा वापर करण्यात आला आहे. याचसरोबर वर्तमानपत्रे, मासिके, साप्ताहिके या साधनांचाही वापर करण्यात आलेला आहे.

आशय विश्वेषण : मुफान सेना रत

भारतातृत झ्रांतिसिंह नाना पाटील बांती ईसनी सत्ता संतुष्टात आणाध्याची असेल तर ईसट भा डीच्यांना मत्त्रानेय सावकार, संग्रमतामदार य वतनदार या लोकांना नावनाट करणे गरतेने आहे हे ओळखले होते. अशा गुंडांगरी प्रवृतीच्या लोकांना पकटून त्यांना शिक्षा देण्याचे कार्य सुरु केले. थिया, गरीब योच्यावर अन्याय प्राल्यास सावकार व कर्नदार योच्यात वाद निर्माण शाल्यास प्रतिसरकार न्याय निवाडाचे काम करत असे, ईस गांच्या गुलामगिरीतृत भारत देखाला पुरु करणे व गरीब क्षण्य-यांच्या सुख समाधानाताठी, हिलासाठी व स्वराज्य सावकाणासाठी गुंडल या ठिकाणी लच्छती प्रतिस्था केंद्र जी. औ, वार्य्च्या नेतृत्वाखाली सुरु करण्यात आहे, प्रतिसरकारची तुकान सेना औ, डी, बाप् यांच्या नेतृत्वाखाली कार्य करीत होती. तुकान सेनेला झ्रांतियीर दल परण्यत ही संबोधले आई, धुळे खतिज लुटीतृत तेथे व्यायाम शाळा सुरू करण्यात आल्या, जी, डी, बार्य्च्या नेतृत्वाखाली गावागावातील तडफवार तका लक्ष्मरी प्रशिक्षण घेऊ लावले, यातृत्व गुफान सेनेची निर्मिती झाली. गुफान सेना दल मरणाने व्याय सत्याच पाईक होते. बुफान सेना दल मरणाने जनतेचे तीवन होते, कष्टकरी, गोर गरीब शेतकरी, सावका-यांच्या अन्याव अत्यावताला सळी पडणा-बांना ती, डी, बार्य्च्या नेतृत्वाखाली तुफान सेनेने मोठे सहकार्य केले. गुफान सेनेने गावोगावचे पुंड, ईमन पोलिसांचे खबरे, जुलानी वतनदार, सरजामदार, दरोडेखोर, सावकार यांचा बंटोवमल करणाची महत्त्वाची भूमिका पार पाडली, अनेक प्रकारची लोक वितकारी काणे या गुफान सेनेने वाती घेवलेली होती. ईमन सरकार धार्जीन्य लोकांच्या मनात गुफान सेनेने दहरात निर्माण केली. समाजातील गुडिगरीची प्रवृत्ती कमी होऊ लागली, वाचे सर्व थेय गुफान सेनेला दिले जाते.

तुफान सेनेची रचना

साता-बाच्या दक्षिण भागात गावगुंड, दरोडेखोर खंचे मोठे प्रस्व निर्माण झाले होते, महात्मा गांवीणी व क्रांतिसिंह नाना पार्टील बांच्या नावाचा वाचर करून हे लोक दरोडे घालत. त्यामुळे देगभकाची बदनामी होत असे, तर दुस-वा बाजूला सांततामय नामांने वज मिळवणे अवचंड जात होते, या अला अर्तवाह्य समस्या सोडविण्यासाठी तुकान सेनेची स्थायना झाली. क्रांतिसिंह नाना पार्टील बांनी सुभाषचंद्र बोस बांच्या आझाद हिंद सेनेच्या धर्तीवसी तुकान सेनेची निर्मिती केली होती, तुकान सेनेच्या बाध्यमायून दरोडेखोर च मावगुंडांचा बंदोबस्त, प्रामसकाई, साध्यता प्रसार, दारूबंदी, हुंडा बंदी, अस्पृत्यता निवारण व सावकार लाहीचे निवारण आदी, कामे बुक झाली, त्याचचरोचर भूमिणत क्रांतीकारकांच्या कुटुवियांचे संरक्षण करणे, त्यांच्या अञ्चली सोडिवणे ही कामे तुकान सेनेला करावी लागत असत. तुकान सेनेमध्ये आठ केंद्रन होते. सर्व केंद्रनवर फिल्ड मार्टील अशी शुकान सेनेची रचना होती.

MARATHI / Peer Reviewed Referred and UGC Listed Journal No. : 47026

नुफानी सेनेची उहिएवे

- ६. मावाचे संरक्षण करणे व गावाची स्वच्छता करणे.
- स्रोक्तना साक्षर बनविणे.
- दासमंदी करणे,
- दुर्जनाथा नायनाट करणे.
- ५. समाजातून अस्पृत्यतेचे निवारण करणे.
- ६. स्वातंत्र्यलद्यात सहभागी तस्माचे संस्थाण करणे.
- तुमानी सेनेच्या पाध्यमातून गावामावात न्यायदान व्यवस्था करणे.
- देशासाठी हुताल्य स्थिकारलेल्या व तुर्गगत असलेल्या देशभक्त सैनिकांच्या कुटुंबाची देखभाल करणे.

नेजाबक बरुवाचे मैन्य

तुफान सेनेच्या प्रसार ब्यावा व सर्व सामान्य पर्यंत ही सेना पोहचिवच्यासाठी खोकसंग्रह याद्या म्हणून भागवार संघटकांच्या नेनमुका करण्यात आल्या, प्रशिक्षण विविद्यातृत प्रशिक्षण घेतलेले अनेक सैनिक तथार केले जात असत. त्यातील निवडक सैनिकांची चाचणी घेडल त्यांना तुकान सैनिक अशी संग्रा दिली जात असे च तुकान सेना दलात त्यांचा सहभाग घेतला जात असे, तुकान सेना दलाचे प्रमुख फिल्ड मार्शल जी, डी, खाड हे होते, तेच तुकान सैनिकांची निवड करीत असत. तुकान सेनेच्या सेन्य भातीचे दश्य रोगांच कारक असे, शंभर ते दोनशे तसन एका रोगत उमे केले जात असत. प्रत्येक तक्षणाकडून मी तुकान आहे असे वदवून घेतले जात असे, त्याच्या उन्तव्या साताच्या मनगटावर हातातील काठीचा जोरदार तडाखा मारला जात असे, त्या बेळी जर कळकळळला, खचला किया मादला तर त्याला तुकान सेनेत घेतले जात नसे, अशा प्रकार प्रामाणिक, कटाळू, देशायर प्रेम करणाऱ्या देशकत तक्ष्णांची चातून तुकान सेनेत भरती होत असे, हे सैनिक सर्व आधाड्यावर कार्य करण्यास तथार असत, या तुकान सेनेच्या शीर्याच्या प्रतिसरकारचे वर्चस्य सर्व आधाड्यावर निर्माण झाले. प्रतीसरकारच्या तुकान सेनेची ईग्लंडच्या पार्लमंटमध्ये चर्चा सुरु झाली.

सैनिकांना प्रशिक्षण

तुष्कान सेनेतील सैनिकांना प्रतिक्षण देण्याचे व त्यांना तुष्कान सेनेत भरती करण्याचे काम क्रांतिवीर राम लाढ व क्रांतिवीर अकाराम प्रवार बांध्याकडे होते, म्हणून त्यांना कॅप्टन या नावाने संबोधले जात असे. हे दोधे क्रांतिकारक प्रतिक्षण शिविरात काम पाहत असता, व्यायाम शास्त्रेतील एक वर्ग राम लाड व दुसरा वर्ग अकाराम प्रवार घेत असत. या दोधांनी मिळून १०,००० तुष्कान सैनिकांची भरती केलेली होती. गावागायात जाऊन त्यांनी प्रतिक्षण शिविर धेतली. व पातून तुष्कान सेनेत सैनिकांची भाती केली, या प्रशिक्षण वर्गामध्ये लाढी काठी, बंदुका चालविणे, गुंडांचा बंदोबस्त करणे, बाळसेळ च तोडमोड करून गनिमी पडलीने चळवळ वाढविणे, बासारके सर्व शिक्षण दिले जात असे. तसेच दावगोळा बनविणे, दोंगर माध्यावर धावत सहणे, सरकार धर्जिण्य लोकांचा बंदोबस्त करणे व स्थांची माहिती मिळविणे असे विविध प्रकारचे प्रशिक्षण तरूण सैनिकांचा दिले जात असे, सैनिकांकडून ही तबारी करून घेण्याची संपूर्ण जबाबदाही केंप्टन या नात्याने राम लाद व अकाराम पवार बांच्याकडे असे, कडक विस्त हा या दोषांचा प्रमुख गुण होता. सातारा जिल्ह्यातील प्रत्येक गावामध्ये सेवादले स्थापन करण्यात आलेली होती.

स्वातंत्र्यलद्याला यळ

तुष्मन सेनेची चुंडलची व्यावाम शाळा परणजे हे झांतीचीड होते. झांतीकारकांच दिशा देणारे मुख्य फेंड होते. कुंडल वेशील तुष्मन दलाच्या ११ सायकली होत्या. या सायकलीमुळे प्रतीसरकारच्या निरोपाची आवक-जावक होत असे. एयदेच चव्हे तर तुष्मन सेनेच्या मिलिटरी साठी एक बेंड पढक मुंचईकून मार्गावरचात आलेले होते. ईप्रव सरकारने मात्र अनेक बेळा छापे मारून अटक सत्र सुरु केले होते. त्यामुळे अनेक बेळा झांतीकारकांचा भूमिगत ब्हाये लागत असे. तुष्मन दलाचे सैनिक व कार्यकर्ते अनेक आधाड्यावर काम करीत असत. भूमिगत झांतीकारकांचा गृह संदेश पाठविण्याचे कार्य अगरी चोखपणे बजावले जात असे. समाजातील जातीयता व अस्पृत्यता नष्ट बराची यासाठी सामाजिक प्रवोधने केली जात असत. तुष्मान सेनेने एक गाव एक पाणवटा ही घोषणा करून अस्पृत्य वर्गाला विण्याचे पाणी निळावे यासाठी ही सोच करून दिली होती. सबस्त्रता, शिक्षण, गांधीलम्ब प्रचार, अस्पृत्यता निवारण, जुणार चंदी, हुंडा बंदी, दाक विज्ञी उद्योग बंद असे अनेक उच्छम हाती थेऊन ते यशस्त्रीपणे यार वाडले. बातून देशावतीचा प्रसार करून स्वातंत्र्य लढ्याला बळ दिले. तुष्मन सेनेच्या निर्मितीमुळे प्रतीसरकारला होणारा विरोध बांबला. तसेच बाच तुष्मन सेनेने मिरज पे ट्रेन लुट यशस्त्री केली. तर खानदेत्रात सुख्या चिलटाण येथे तुष्मन सेनिकानी लाखो रूपयांचा खांवना लुटला.

न्याय दयवस्था

तुफान सेनेचे महत्त्वाचे कार्य महत्त्वाचे स्वायदान होय. तुफान सेनेनी गायोगावी न्यायदान मंडळे स्थापन केली. या न्यायमंडळांनी विना मोबदला सामान्य लोकांना न्याय मिळयून दिला, याचा परिणाम असा झाला कि सरकारच्या कोर्ट कचे-चा बंद होऊ लागल्या, तुफान सेना दलाच्या या न्याय मंडळाला जनता कोर्ट असे महटले जात असे. जनता कोर्ट हे एवी भरत असे. ज्या दिवसी जनता कोर्ट भरणार आहे. त्या सभेची माहिती कोणालाही म देता त्या भागातील तुफान दलावील कार्यकर्त्यांना गुप्त संदेश दिला जात असे. एवी अचानकपणे लोक संपटीत केले जात. या जनता कोर्टाचे प्रमुख न्यायाधीश जी. डी. लाड हे आपल्या तुफान सैन्यांसोबत हजर राहत असत, महत्वाचे महणजे न्यायदान पंचायतीत विकलांना उभे फरून न्याय

MARATHI / Peer Reviewed Refereed and UGC Listed Journal No.: 47026

देण्याची प्रथा तुफान सेनेने सुरू केली, विशेष प्रत्याने या बनता कोटीन लहान मोठ्या जवळ जवळ पंचवित्रे दाव्यांचा निकाल कुंडल मटाच्या न्याय मंडळान दिला गेला होता. त्या सर्व निकालाचे रेकॉर्ड प्रतीसरकारकडे उपलब्ध आहे.

विधायक कार्य

जी. डी. बापू यांचा विवात इ. स. १९४४ मध्ये विजया ताई यांच्या बरोबर तुफान सेनेच्याच सासीने पार पडला. तो विवास क्रांतिकारी पढतिनेच लावण्यात आला. एकमेकांना सकाचा टीका लावून हा विवास संपन्न झाला. भाकसालेब नेवाळकर व दि. माडगुळकर यांची छोटी भाषणे झाली तर उत्तरसव पाटील व बाधनसव चोरपंदे यांनी क्रांतिगीन गायले. हा विवास मध्यरात्री साडेबारा ते एकच्या सुमारास संपन्न झाला, पुढे विजयाताई लाड या जी. डी. बाणूंच्या पत्नी सुच्टा या तुमान सेनेचा एक भाव बनून कार्य करू लायल्या, तुमान सेनेच्या प्रत्येक कार्यामध्ये त्या सहभागी होत्या, तुमान सेनेच केंग्ट्न महसून रामचंद उर्क भाऊ लाड यांचे कार्य महत्वपूर्ण आहे. सातास परिसरातील गाव गुंड, साचकार, झाज खबर यांना जबर शिखा करून सामान्य जनतेला संरक्षण दिलं,या चळवळीला जो लोकाश्रय मिळाला त्यामध्ये भाऊचा चाटा खूप मोठा आहे. तुमान सेनेचे केंग्ट्न महसून काम करीत असताना भाऊनी अनेक कार्यात सहभाग घेतला, त्यानून अनेक प्रसंगांना सामोर जावे लागत होते. इसलामपुरचा मोर्चा, बुलढाणा व यवतमाळ जिल्लातील तुकान सेनेच्या शाळा सुक करणे. विदर्भात राष्ट्रसेया टलाच्या शाखा सुक करणे ही जसाबदारी भाऊनी केंग्टन महसून व एक ध्येय चेदा स्वातंत्र्य सैनिक महसून पार पाडली. महिलानीकी सञस्य लद्यात सहभागी व्यत्ये यातून सातारच्या प्रतीसरकार मधील क्रांती वीरोगना राजमती पाटील यांनी इ. स. १९४५ मध्ये ऐतवडे येथे बांचला हुकान सेनेची निर्मिती केली.

सार्राश

क्रांतिसिंह नाना पाटील यांच्या प्रतीसरकारमधून स्थापन प्रालेल्या तुकान सेनेला भारताच्या स्वातंत्र्य लढ्यामध्ये थेष्ठ
स्थान आले, नुष्यान सेनेन्यारे खेड्या - इपातील गाया - गायागील प्रामसभा स्थापन करून गायातील लढ्या मोठे तटे निद्याले
बात असत, वादी पक्षाकडून तक्रारीचा अर्ज दाखल होत असे, सर्व विषयांचे निकाल दिले जात असत, वादी व प्रतीयादी या
सर्वांना एकत्र बोलायून गाय चायडीच्या पारायर तक्रारीचे निवारण होत असे, असे शेकडो निकाल प्रतिसरकारच्या तुष्यान
सेनेने दिले होते, प्रत्येक गायाजील तरून युवक तुफान दलाचे सैनिक होते. त्यामुळे गावागायात अनेक क्रांतिकारक तयार झाले.
तुष्यान सेनेच्या कार्यामुळे स्थातंत्र्य लखा अगर्वी शेताच्या बांधापर्यंत गेला परमूनच भारतीय स्थातंत्र्य लढ्यामध्ये
प्रतिसरकारच्या तुकान सेनेला महत्त्वपूर्ण स्थान आहे.

MARATIB / Peer Reviewed Referred and UGC Listed Journal No.: 47026

संदर्भ ग्रंथ

- पाटील स. सु... सांगली साता-याचे राजकारण, सांगली, १९८६. 2.
- कदम य. मा., आधुनिक भारत, कील्हापूर, २०१०.
- घोडके ह. म. महाराष्ट्र गौरव गावा, एजहंस प्रकाशन, २०००. 3.
- पधार था, ग., फ्रांतिसिंह नाना पाटील, कोल्सपूर, २००८. ¥.
- पाटने संभाजीराव, सात-वाचे कोहिनूर, पुने, २०११.
- शिंदे आबासारेज, साता-वाचे प्रतिसरकार प्रसंग आणि व्यक्ती, कोल्हापूर, १९८७. Б,
- केळका सीपाद, छोडो भारत, पुणे, १९८३. 10.
- शिवणीकर, सातारचा सिंह, पुणे, १९८६.
- प्रवार जयसिंगराव, क्रांतिसिंह नाना पाटील, फोल्हापूर, १९८३.
- पाटील विश्वास, क्रातिसूर्य, कोलराष्ट्र,१९८३.
- ११. पाटील उत्तमगाव, अर्थतिपर्व, पुणे, २००१.
- १२. पाटील दिनकर, क्रांतिसिंह नाना पाटील आणि होतकरी चळवळ, कोल्हापूर, २०११.
- १३. पाटील विलास, ब्रॉलीसिंह नामा पाटील, सातारा, १९८६.

MARATHI / Peer Reviewed Refereed and UGC Listed Journal No. ; 47026

ISSN-2249-3034 **UGC CARE Listed Journal**

वर्ष १६ वे / अंक २ रा/एप्रिल, मे, जून - २०२२

वर्तमानपत्रातील सदर लेखन आणि अस्वस्थ करणाऱ्या ग्रामीण जीवनाचे विदारक अनुभव मांडणारी 'अस्वस्थ वर्तमान' सारखी कादंबरी किंवा 'पीळ' सारख्या कवितासंग्रहातूनही त्यांची यालमेल प्रकट झाली आहे. कोलाज आणि तैलचित्रातूनही यावलीकर चहुअंगाने व्यक्त होतात. रंग, रेषा आणि शब्द या तिन्ही माध्यमांमधुन प्रकटलेला त्यांच्या मनाचा

कादंबरी यातुनही ते व्यक्त होत ग्रहिले. अंधश्रद्धा निर्मुलन समिती, व्याख्याने, साहजिकच होते. त्याची अभिव्यक्ती वेगवेगळ्या माध्यमांमधून होत गेली. कथा, कविता,

मराठी ग्रामीण कविता : निसर्गाच्या मांडीवर नांद्रणारा गाव प्रा.डॉ. चंद्रकांत पोतदार

प्रस्तावना :

कविता ही एक जाबबदारीने लिहिण्याची गोष्ट आहे. काळाची पावले ओळखून आपल्या वर्तमान वगण्याला आपलंसं करत अगण्याचा प्रयत्न करतानाच अंतर्मनाची पुसमट कवी व्यक्त करत असतो. ते व्यक्त होणं म्हणने त्याची कविता असते. दैनंदिन जीवनाच्या जगण्याची प्ररत्नपत्रिका सोडवताना कविता हे त्याचं स्वत:शी प्रामाणिक राहून मराठी कवितेच्या परंपरेत कवी केशवसुतांच्या काव्याचा आदर्श मोठा भव्य आणि उदात दिलेलं उत्तर असतं, कारण स्वतःला ब्यक्त करण्याचा पहिला उद्गार कवितेचा असतो. असा आहे. तळागाळातल्या सामान्यांच्या दुःखपूर्ण आयुष्याची व्यापक जाणींच त्यांच्या क्रवितेतृन व्यक्त झाली. अंत्यबाच्या मुलाचा पहिला प्रश्न असो किंबा नवा शिपाई असी, ती बाईट, कुरूप आणि असुंदरतेच्या विरुद्ध भाष्य करून भव्य-दिव्य अशा मुक्त आणि मोकळ्या बाताबरणात माणूस जगायला हवा, अशी माणुसकीची भूमिका त्यांनी मांडली होती. सामान्य माणूस हा त्यांच्या केंद्रस्थानी होता. मुके पडसाद आणि मुक्त शास यामधले

भ्रमणभाष : ९८९०९६५५७६

सुनील यावलीकरांचा दुर्दम्य प्रवास म्हणजे महाराष्ट्राच्या सत्वशील परंपरेचा अनुबंध

अधिक विस्तारत नेणारी कलात्मक अदाकारी आहे, हे निश्चितपणे म्हणता येते

(सेखक महाराष्ट्र शासनाच्या राज्य मराठी विकास संस्थेच्या निवामक मंडळाचे सदस्य आहेत.)

'तुका म्हणे गर्भवासी । सुखे घालावे आम्हासी' असे म्हणणाऱ्या तुकोबांच्या विचारांचा संस्कार आणि राष्ट्रसंतांच्या ग्रामविकास संकल्पनेचा प्रत्यक्ष कृतीतून केलेला प्रसार असा हा त्रिवेणी संगम आहे. अमरावतीच्या फूटपाथपासून ते थेट जहांगीर आर्ट गेंलरी पर्यंतचा

तळ वाचक आणि रसिकांनाही अस्वस्थ बनवणारा आहे. तथागत गौतम बुद्धाची करुणा

साभार पोच

- अरण्याहत्त/दा.गो.काळे/कॉप्रकॉइन पब्लिशिंग प्रा.लि./गाञ्जियाबाद, दिल्ली
 - प्रश्नांची मातृभाषा/युवराज सोनटक्के/स्मिता प्रकाशन, गुहागर
- माणूस असण्याच्या नॉदी/मेघराज मेश्राम/लोकवाङ्मय गृह, मुंबई
 - मुठीतील घाळ्/अबय चिकाटे/विजय प्रकाशन, नागपू
- चोखामेळा : संत, कवी आणि माणूस/माधव पुरवाड/बीज प्रकाशन गृह,
- आंतर भारती/राम देशमुख/सोनल प्रकाशन, दर्यापूर शेगाव, जि. बुलढाणा

 - चिडीचूप्प/रफिकसूरज/शब्दपब्लिकेशन्स, मुंबई

१४ । सर्वधारा । एप्रिल-मे-जून-२०१२

Yashawantrao Charan Maharidyalaya

PRINCIPAL

Dist.Kolhapuri, Pin-416 552. Halkarni, Tal, Chandgad,